浓缩比对双层玻璃包膜抛物面槽集热器热经济性的影响

Julian D. Osorio, A. Rivera-Alvarez
{"title":"浓缩比对双层玻璃包膜抛物面槽集热器热经济性的影响","authors":"Julian D. Osorio, A. Rivera-Alvarez","doi":"10.2139/ssrn.3874502","DOIUrl":null,"url":null,"abstract":"The thermal and economic performance of parabolic trough collectors (PTCs) and PTCs with double glass envelope (DGE-PTCs) are analyzed in this work. A model including thermal and optical effects is developed to evaluate the efficiency of vacuum and air-filled DGE-PTCs, while an economic model based on two commercial PTCs (Sky Trough and Ultimate Trough collectors) was developed to assess the economic performance. The efficiency and thermal output per unit cost of the proposed DGE-PTCs are analyzed as a function of the concentration ratio and are respectively compared with the thermal and economic performance of traditional and commercial PTCs. The optimum concentration ratio for maximum thermal performance varies from 11.0 to 23.3 for operation temperatures ( [[EQUATION]] ) between 100°C and 400°C, while the optimum concentration ratio for maximum economic performance ranges between 28.9 and 33.2 for the SkyTrough and between 40.0 and 43.8 for the Ultimate Trough collector designs. The DGE-PTCs presents higher thermal and economic performance at high operating temperatures, which presents a valuable opportunity for implementation in new PTC designs pursuing higher operating temperatures to achieve superior thermal cycle efficiencies.","PeriodicalId":163818,"journal":{"name":"EnergyRN EM Feeds","volume":"9 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Influence of the Concentration Ratio on the Thermal and Economic Performance of Parabolic Trough Collectors with Double Glass Envelope\",\"authors\":\"Julian D. Osorio, A. Rivera-Alvarez\",\"doi\":\"10.2139/ssrn.3874502\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The thermal and economic performance of parabolic trough collectors (PTCs) and PTCs with double glass envelope (DGE-PTCs) are analyzed in this work. A model including thermal and optical effects is developed to evaluate the efficiency of vacuum and air-filled DGE-PTCs, while an economic model based on two commercial PTCs (Sky Trough and Ultimate Trough collectors) was developed to assess the economic performance. The efficiency and thermal output per unit cost of the proposed DGE-PTCs are analyzed as a function of the concentration ratio and are respectively compared with the thermal and economic performance of traditional and commercial PTCs. The optimum concentration ratio for maximum thermal performance varies from 11.0 to 23.3 for operation temperatures ( [[EQUATION]] ) between 100°C and 400°C, while the optimum concentration ratio for maximum economic performance ranges between 28.9 and 33.2 for the SkyTrough and between 40.0 and 43.8 for the Ultimate Trough collector designs. The DGE-PTCs presents higher thermal and economic performance at high operating temperatures, which presents a valuable opportunity for implementation in new PTC designs pursuing higher operating temperatures to achieve superior thermal cycle efficiencies.\",\"PeriodicalId\":163818,\"journal\":{\"name\":\"EnergyRN EM Feeds\",\"volume\":\"9 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"EnergyRN EM Feeds\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.2139/ssrn.3874502\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"EnergyRN EM Feeds","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.2139/ssrn.3874502","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文分析了抛物线槽集热器(ptc)和双层玻璃包膜集热器(dge - ptc)的热学和经济性能。建立了一个包括热效应和光学效应的模型来评估真空和充气dgge - ptc的效率,并建立了一个基于两种商用ptc(天空槽和终极槽集热器)的经济模型来评估经济性能。分析了dgge - ptc的效率和单位成本的热输出作为浓度比的函数,并分别与传统和商业ptc的热学和经济性能进行了比较。对于100°C到400°C的操作温度([[EQUATION]]),获得最大热性能的最佳浓度比在11.0到23.3之间变化,而对于sky槽集热器设计,获得最大经济性能的最佳浓度比在28.9到33.2之间,对于Ultimate槽集热器设计,则在40.0到43.8之间变化。dgge -PTC在高工作温度下具有更高的热性能和经济性能,这为追求更高工作温度以实现卓越热循环效率的新型PTC设计提供了宝贵的机会。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Influence of the Concentration Ratio on the Thermal and Economic Performance of Parabolic Trough Collectors with Double Glass Envelope
The thermal and economic performance of parabolic trough collectors (PTCs) and PTCs with double glass envelope (DGE-PTCs) are analyzed in this work. A model including thermal and optical effects is developed to evaluate the efficiency of vacuum and air-filled DGE-PTCs, while an economic model based on two commercial PTCs (Sky Trough and Ultimate Trough collectors) was developed to assess the economic performance. The efficiency and thermal output per unit cost of the proposed DGE-PTCs are analyzed as a function of the concentration ratio and are respectively compared with the thermal and economic performance of traditional and commercial PTCs. The optimum concentration ratio for maximum thermal performance varies from 11.0 to 23.3 for operation temperatures ( [[EQUATION]] ) between 100°C and 400°C, while the optimum concentration ratio for maximum economic performance ranges between 28.9 and 33.2 for the SkyTrough and between 40.0 and 43.8 for the Ultimate Trough collector designs. The DGE-PTCs presents higher thermal and economic performance at high operating temperatures, which presents a valuable opportunity for implementation in new PTC designs pursuing higher operating temperatures to achieve superior thermal cycle efficiencies.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Nanoparticles Based Single and Tandem Stable Solar Selective Absorber Coatings with Wide Angular Solar Absorptance Effects of Climate on Renewable Energy Sources and Electricity Supply in Norway Thermal Interactions Among Vertical Geothermal Borehole Fields Efficient Methanol Dehydration to DME and Light Hydrocarbons by Submicrometric ZrO2-ZSM-5 Fibrillar Catalysts with a Shell-Like Structure Investigating Risks in Renewable Energy in Oil-Producing Countries Through Multi-Criteria Decision-Making Methods Based on Interval Type-2 Fuzzy Sets: A Case Study of Iran
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1