用遗传算法从低质量数据中学习模糊语言模型

L. Sánchez, J. Otero
{"title":"用遗传算法从低质量数据中学习模糊语言模型","authors":"L. Sánchez, J. Otero","doi":"10.1109/FUZZY.2007.4295659","DOIUrl":null,"url":null,"abstract":"Incremental rule base learning techniques can be used to learn models and classifiers from interval or fuzzy-valued data. These algorithms are efficient when the observation error is small. This paper is about datasets with medium to high discrepancies between the observed and the actual values of the variables, such as those containing missing values and coarsely discretized data. We will show that the quality of the iterative learning degrades in this kind of problems, and that it does not make full use of all the available information. As an alternative, we propose a new implementation of a mutiobjective Michigan-like algorithm, where each individual in the population codifies one rule and the individuals in the Pareto front form the knowledge base.","PeriodicalId":236515,"journal":{"name":"2007 IEEE International Fuzzy Systems Conference","volume":"37 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-07-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":"{\"title\":\"Learning Fuzzy Linguistic Models from Low Quality Data by Genetic Algorithms\",\"authors\":\"L. Sánchez, J. Otero\",\"doi\":\"10.1109/FUZZY.2007.4295659\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Incremental rule base learning techniques can be used to learn models and classifiers from interval or fuzzy-valued data. These algorithms are efficient when the observation error is small. This paper is about datasets with medium to high discrepancies between the observed and the actual values of the variables, such as those containing missing values and coarsely discretized data. We will show that the quality of the iterative learning degrades in this kind of problems, and that it does not make full use of all the available information. As an alternative, we propose a new implementation of a mutiobjective Michigan-like algorithm, where each individual in the population codifies one rule and the individuals in the Pareto front form the knowledge base.\",\"PeriodicalId\":236515,\"journal\":{\"name\":\"2007 IEEE International Fuzzy Systems Conference\",\"volume\":\"37 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-07-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"14\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2007 IEEE International Fuzzy Systems Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/FUZZY.2007.4295659\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 IEEE International Fuzzy Systems Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FUZZY.2007.4295659","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14

摘要

增量规则库学习技术可用于从区间或模糊值数据中学习模型和分类器。这些算法在观测误差较小的情况下是有效的。本文研究的是变量的观测值与实际值之间存在中高差异的数据集,例如包含缺失值和粗离散数据的数据集。我们将证明迭代学习的质量在这类问题中会下降,并且它没有充分利用所有可用的信息。作为替代方案,我们提出了一种多目标密西根算法的新实现,其中种群中的每个个体编写一条规则,而帕累托前沿的个体形成知识库。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Learning Fuzzy Linguistic Models from Low Quality Data by Genetic Algorithms
Incremental rule base learning techniques can be used to learn models and classifiers from interval or fuzzy-valued data. These algorithms are efficient when the observation error is small. This paper is about datasets with medium to high discrepancies between the observed and the actual values of the variables, such as those containing missing values and coarsely discretized data. We will show that the quality of the iterative learning degrades in this kind of problems, and that it does not make full use of all the available information. As an alternative, we propose a new implementation of a mutiobjective Michigan-like algorithm, where each individual in the population codifies one rule and the individuals in the Pareto front form the knowledge base.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Microcalcification Detection in Mammograms Using Interval Type-2 Fuzzy Logic System System of fuzzy relation equations with sup-* composition in semi-linear spaces: minimal solutions Parallel Type-2 Fuzzy Logic Co-Processors for Engine Management Robust H∞ Filtering for Fuzzy Time-Delay Systems Neural Networks for Author Attribution
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1