Tifanny Nabarian, M. A. Ganiardi, Reza Firsandaya Malik
{"title":"杂交方法c -手段的实现和Fuzzy Swarm为纺织公司的线程分类","authors":"Tifanny Nabarian, M. A. Ganiardi, Reza Firsandaya Malik","doi":"10.54914/jtt.v6i1.247","DOIUrl":null,"url":null,"abstract":"Salah satu bahan baku utama dalam proses produksi di perusahaan tekstil adalah benang. Ketersediaan data konsumsi benang pada perusahaan tekstil dapat dimanfaatkan untuk mengetahui pola konsumsi benang pada periode tertentu. Data mining metode clustering adalah salah satu teknik yang dapat digunakan untuk membentuk pola dari data benang tersebut. Pada penelitian ini, digunakan algoritma clustering Hibrid Fuzzy C-Means (FCM) dan Fuzzy Particle Swarm Optimization (FPSO), yaitu algoritma kombinasi dari FCM dan FPSO. Algoritma hibrida ini mampu mengatasi kelemahan dari algoritma asalnya, yaitu FCM. Tujuan dari penelitian ini yaitu menguji performa dari metode hibrid FCM-FPSO dengan cara mengimplementasikan pengelompokan data benang perusahaan tekstil ke dalam sebuah aplikasi. Aplikasi dikembangkan dengan menerapkan model Unified Process (UP). Hasil dari implementasi tersebut adalah nilai rata-rata fungsi objektif terendah dicapai oleh algoritma hibrid FCM-FPSO sebesar 3441,00 kemudian diikuti oleh algoritma FCM dengan nilai sebesar 3540,33 dan yang tertinggi dicapai oleh algoritma FPSO dengan nilai sebesar 4485,40. Nilai rata-rata fungsi objektif yang terendah ini menunjukkan bahwa aplikasi yang dibangun berhasil membuktikan keunggulan algoritma hybrid FCM-FPSO dalam menghasilkan cluster data benang.","PeriodicalId":428429,"journal":{"name":"Jurnal Teknologi Terpadu","volume":"195 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-07-28","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Implementasi Metode Hibrid Fuzzy C-Means dan Fuzzy Swarm untuk Pengelompokkan Data Benang Perusahaan Tekstil\",\"authors\":\"Tifanny Nabarian, M. A. Ganiardi, Reza Firsandaya Malik\",\"doi\":\"10.54914/jtt.v6i1.247\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Salah satu bahan baku utama dalam proses produksi di perusahaan tekstil adalah benang. Ketersediaan data konsumsi benang pada perusahaan tekstil dapat dimanfaatkan untuk mengetahui pola konsumsi benang pada periode tertentu. Data mining metode clustering adalah salah satu teknik yang dapat digunakan untuk membentuk pola dari data benang tersebut. Pada penelitian ini, digunakan algoritma clustering Hibrid Fuzzy C-Means (FCM) dan Fuzzy Particle Swarm Optimization (FPSO), yaitu algoritma kombinasi dari FCM dan FPSO. Algoritma hibrida ini mampu mengatasi kelemahan dari algoritma asalnya, yaitu FCM. Tujuan dari penelitian ini yaitu menguji performa dari metode hibrid FCM-FPSO dengan cara mengimplementasikan pengelompokan data benang perusahaan tekstil ke dalam sebuah aplikasi. Aplikasi dikembangkan dengan menerapkan model Unified Process (UP). Hasil dari implementasi tersebut adalah nilai rata-rata fungsi objektif terendah dicapai oleh algoritma hibrid FCM-FPSO sebesar 3441,00 kemudian diikuti oleh algoritma FCM dengan nilai sebesar 3540,33 dan yang tertinggi dicapai oleh algoritma FPSO dengan nilai sebesar 4485,40. Nilai rata-rata fungsi objektif yang terendah ini menunjukkan bahwa aplikasi yang dibangun berhasil membuktikan keunggulan algoritma hybrid FCM-FPSO dalam menghasilkan cluster data benang.\",\"PeriodicalId\":428429,\"journal\":{\"name\":\"Jurnal Teknologi Terpadu\",\"volume\":\"195 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-07-28\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Jurnal Teknologi Terpadu\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.54914/jtt.v6i1.247\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Jurnal Teknologi Terpadu","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.54914/jtt.v6i1.247","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Implementasi Metode Hibrid Fuzzy C-Means dan Fuzzy Swarm untuk Pengelompokkan Data Benang Perusahaan Tekstil
Salah satu bahan baku utama dalam proses produksi di perusahaan tekstil adalah benang. Ketersediaan data konsumsi benang pada perusahaan tekstil dapat dimanfaatkan untuk mengetahui pola konsumsi benang pada periode tertentu. Data mining metode clustering adalah salah satu teknik yang dapat digunakan untuk membentuk pola dari data benang tersebut. Pada penelitian ini, digunakan algoritma clustering Hibrid Fuzzy C-Means (FCM) dan Fuzzy Particle Swarm Optimization (FPSO), yaitu algoritma kombinasi dari FCM dan FPSO. Algoritma hibrida ini mampu mengatasi kelemahan dari algoritma asalnya, yaitu FCM. Tujuan dari penelitian ini yaitu menguji performa dari metode hibrid FCM-FPSO dengan cara mengimplementasikan pengelompokan data benang perusahaan tekstil ke dalam sebuah aplikasi. Aplikasi dikembangkan dengan menerapkan model Unified Process (UP). Hasil dari implementasi tersebut adalah nilai rata-rata fungsi objektif terendah dicapai oleh algoritma hibrid FCM-FPSO sebesar 3441,00 kemudian diikuti oleh algoritma FCM dengan nilai sebesar 3540,33 dan yang tertinggi dicapai oleh algoritma FPSO dengan nilai sebesar 4485,40. Nilai rata-rata fungsi objektif yang terendah ini menunjukkan bahwa aplikasi yang dibangun berhasil membuktikan keunggulan algoritma hybrid FCM-FPSO dalam menghasilkan cluster data benang.