超级账本结构上的真实性和匿名性智能合约协议

Rishi Saket, N. Singh, Pankaj Dayama, Vinayaka Pandit
{"title":"超级账本结构上的真实性和匿名性智能合约协议","authors":"Rishi Saket, N. Singh, Pankaj Dayama, Vinayaka Pandit","doi":"10.1109/ICBC48266.2020.9169401","DOIUrl":null,"url":null,"abstract":"We consider a new class of business-to-business (B2B) blockchain applications that require the execution of specific subroutines to simultaneously satisfy authenticity, compliance, and anonymity. Existing blockchain smart contract protocols do not, either directly or with minor modifications, ensure all the three properties. We present the ACAn smart contract protocol guaranteeing authenticity and compliance over a set of anonymous (unlinkable) subroutine executions. ACAn achieves this through a novel combination of zero-knowledge proofs and multiple Merkle-Tree commitments. We specifically focus on implementing ACAn on Hyperledger Fabric, a popular platform for B2B blockchain applications, which processes transactions in the execute-order-commit framework. The latter, however, leads to performance degradation due to read-write conflicts arising out of multiple clients independently executing the ACAn protocol. We propose enhancements to Hyperledger Fabric’s smart contract API to support deferred changes to the shared ledger, allowing us to adapt ACAn so that such conflicts are effectively resolved. Our work provides evidence of significant performance gains due to the proposed enhancements, as well as experimental evaluation of the protocol’s privacy preserving components.","PeriodicalId":420845,"journal":{"name":"2020 IEEE International Conference on Blockchain and Cryptocurrency (ICBC)","volume":"66 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-05-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Smart Contract Protocol for Authenticity and Compliance with Anonymity on Hyperledger Fabric\",\"authors\":\"Rishi Saket, N. Singh, Pankaj Dayama, Vinayaka Pandit\",\"doi\":\"10.1109/ICBC48266.2020.9169401\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"We consider a new class of business-to-business (B2B) blockchain applications that require the execution of specific subroutines to simultaneously satisfy authenticity, compliance, and anonymity. Existing blockchain smart contract protocols do not, either directly or with minor modifications, ensure all the three properties. We present the ACAn smart contract protocol guaranteeing authenticity and compliance over a set of anonymous (unlinkable) subroutine executions. ACAn achieves this through a novel combination of zero-knowledge proofs and multiple Merkle-Tree commitments. We specifically focus on implementing ACAn on Hyperledger Fabric, a popular platform for B2B blockchain applications, which processes transactions in the execute-order-commit framework. The latter, however, leads to performance degradation due to read-write conflicts arising out of multiple clients independently executing the ACAn protocol. We propose enhancements to Hyperledger Fabric’s smart contract API to support deferred changes to the shared ledger, allowing us to adapt ACAn so that such conflicts are effectively resolved. Our work provides evidence of significant performance gains due to the proposed enhancements, as well as experimental evaluation of the protocol’s privacy preserving components.\",\"PeriodicalId\":420845,\"journal\":{\"name\":\"2020 IEEE International Conference on Blockchain and Cryptocurrency (ICBC)\",\"volume\":\"66 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-05-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 IEEE International Conference on Blockchain and Cryptocurrency (ICBC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICBC48266.2020.9169401\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 IEEE International Conference on Blockchain and Cryptocurrency (ICBC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICBC48266.2020.9169401","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

我们考虑了一类新的企业对企业(B2B)区块链应用程序,它需要执行特定的子程序来同时满足真实性、合规性和匿名性。现有的区块链智能合约协议,无论是直接还是稍加修改,都不能确保所有这三个属性。我们提出了ACAn智能合约协议,保证了一组匿名(不可链接)子例程执行的真实性和合规性。ACAn通过零知识证明和多个默克尔树承诺的新颖组合来实现这一点。我们特别专注于在Hyperledger Fabric上实现ACAn, Hyperledger Fabric是B2B区块链应用程序的流行平台,它在执行-订单-提交框架中处理交易。但是,后者会导致性能下降,因为多个客户端独立执行ACAn协议会产生读写冲突。我们建议对Hyperledger Fabric的智能合约API进行增强,以支持对共享账本的延迟更改,从而使我们能够适应ACAn,从而有效解决此类冲突。我们的工作提供了由于提出的增强以及对协议的隐私保护组件的实验评估而显着提高性能的证据。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Smart Contract Protocol for Authenticity and Compliance with Anonymity on Hyperledger Fabric
We consider a new class of business-to-business (B2B) blockchain applications that require the execution of specific subroutines to simultaneously satisfy authenticity, compliance, and anonymity. Existing blockchain smart contract protocols do not, either directly or with minor modifications, ensure all the three properties. We present the ACAn smart contract protocol guaranteeing authenticity and compliance over a set of anonymous (unlinkable) subroutine executions. ACAn achieves this through a novel combination of zero-knowledge proofs and multiple Merkle-Tree commitments. We specifically focus on implementing ACAn on Hyperledger Fabric, a popular platform for B2B blockchain applications, which processes transactions in the execute-order-commit framework. The latter, however, leads to performance degradation due to read-write conflicts arising out of multiple clients independently executing the ACAn protocol. We propose enhancements to Hyperledger Fabric’s smart contract API to support deferred changes to the shared ledger, allowing us to adapt ACAn so that such conflicts are effectively resolved. Our work provides evidence of significant performance gains due to the proposed enhancements, as well as experimental evaluation of the protocol’s privacy preserving components.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Evaluation of Security and Performance of Master Node Protocol in the Bitcoin Peer-to-Peer Network Building Hybrid DApps using Blockchain Tactics -The Meta-Transaction Example FabricUnit: A Framework for Faster Execution of Unit Tests on Hyperledger Fabric Distributed Fractionalized Data Networks For Data Integrity Cross-chain Transactions
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1