{"title":"基于马尔科夫随机场的超像素RGB-D图像分割","authors":"Taha Hamedani, Ramin Zarei, A. Harati","doi":"10.1109/AISP.2015.7123531","DOIUrl":null,"url":null,"abstract":"In this work we proposed a novel super pixel based segmentation approach to solve energy minimization problem which can be used to deal with indoor scene labeling problem. We used Range data beside color image captured from Kinect sensor. This sensor enables us to use 3D features of structure like normal vector and 2D color features. We extracted the region of scene as super pixel based on the both color and direction change; and, consequently, we constructed our graphical model on these regions and apply Markov random field inference to assign efficient labels to them. Our evaluation on 30 scenes of challenging NYU v1 dataset shows that our proposed method reached higher values of “Correct Detection” and lower rate of “Missed instances” and “Noise instances” criteria according to Hoover evaluation method.","PeriodicalId":405857,"journal":{"name":"2015 The International Symposium on Artificial Intelligence and Signal Processing (AISP)","volume":"79 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-03-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"Superpixel based RGB-D image segmentation using Markov random field\",\"authors\":\"Taha Hamedani, Ramin Zarei, A. Harati\",\"doi\":\"10.1109/AISP.2015.7123531\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this work we proposed a novel super pixel based segmentation approach to solve energy minimization problem which can be used to deal with indoor scene labeling problem. We used Range data beside color image captured from Kinect sensor. This sensor enables us to use 3D features of structure like normal vector and 2D color features. We extracted the region of scene as super pixel based on the both color and direction change; and, consequently, we constructed our graphical model on these regions and apply Markov random field inference to assign efficient labels to them. Our evaluation on 30 scenes of challenging NYU v1 dataset shows that our proposed method reached higher values of “Correct Detection” and lower rate of “Missed instances” and “Noise instances” criteria according to Hoover evaluation method.\",\"PeriodicalId\":405857,\"journal\":{\"name\":\"2015 The International Symposium on Artificial Intelligence and Signal Processing (AISP)\",\"volume\":\"79 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-03-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 The International Symposium on Artificial Intelligence and Signal Processing (AISP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/AISP.2015.7123531\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 The International Symposium on Artificial Intelligence and Signal Processing (AISP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AISP.2015.7123531","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Superpixel based RGB-D image segmentation using Markov random field
In this work we proposed a novel super pixel based segmentation approach to solve energy minimization problem which can be used to deal with indoor scene labeling problem. We used Range data beside color image captured from Kinect sensor. This sensor enables us to use 3D features of structure like normal vector and 2D color features. We extracted the region of scene as super pixel based on the both color and direction change; and, consequently, we constructed our graphical model on these regions and apply Markov random field inference to assign efficient labels to them. Our evaluation on 30 scenes of challenging NYU v1 dataset shows that our proposed method reached higher values of “Correct Detection” and lower rate of “Missed instances” and “Noise instances” criteria according to Hoover evaluation method.