任意弯曲的三维导电薄板在实际FDTD应用中的精确处理

S. Schild, N. Chavannes, N. Kuster
{"title":"任意弯曲的三维导电薄板在实际FDTD应用中的精确处理","authors":"S. Schild, N. Chavannes, N. Kuster","doi":"10.1109/IWAT.2007.370176","DOIUrl":null,"url":null,"abstract":"A novel method is proposed to treat thin conductive (TC) sheets of arbitrary three-dimensional shape and curvature with the electromagnetic (EM) finite-difference time-domain (FDTD) algorithm without the need to resolve the sheet thickness spatially. It is shown that due their physical properties. TC sheets can be modeled without introducing additional field components to the conventional Yee scheme. Due to this noninvasive approach, in addition to the preserved stability of the FDTD algorithm. the method can be directly applied to any existing FDTD kernel, such as parallelized or hardware accelerated versions. The method, implemented within the framework of a professional EM FDTD software package, has been developed to be applied to and tested on real-world applications such as mobile phones.","PeriodicalId":446281,"journal":{"name":"2007 International workshop on Antenna Technology: Small and Smart Antennas Metamaterials and Applications","volume":"204 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-03-21","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Accurate Treatment of Arbitrarily Curved 3D Thin Conductive Sheets in Real-World FDTD Applications\",\"authors\":\"S. Schild, N. Chavannes, N. Kuster\",\"doi\":\"10.1109/IWAT.2007.370176\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"A novel method is proposed to treat thin conductive (TC) sheets of arbitrary three-dimensional shape and curvature with the electromagnetic (EM) finite-difference time-domain (FDTD) algorithm without the need to resolve the sheet thickness spatially. It is shown that due their physical properties. TC sheets can be modeled without introducing additional field components to the conventional Yee scheme. Due to this noninvasive approach, in addition to the preserved stability of the FDTD algorithm. the method can be directly applied to any existing FDTD kernel, such as parallelized or hardware accelerated versions. The method, implemented within the framework of a professional EM FDTD software package, has been developed to be applied to and tested on real-world applications such as mobile phones.\",\"PeriodicalId\":446281,\"journal\":{\"name\":\"2007 International workshop on Antenna Technology: Small and Smart Antennas Metamaterials and Applications\",\"volume\":\"204 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-03-21\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2007 International workshop on Antenna Technology: Small and Smart Antennas Metamaterials and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IWAT.2007.370176\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 International workshop on Antenna Technology: Small and Smart Antennas Metamaterials and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IWAT.2007.370176","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

提出了一种利用电磁时域有限差分(FDTD)算法处理任意三维形状和曲率的导电薄板的新方法,而无需在空间上解析薄板厚度。结果表明,由于它们的物理性质。无需在传统的Yee方案中引入额外的现场组件,就可以对TC片进行建模。由于这种非侵入性的方法,除了保留了FDTD算法的稳定性外。该方法可以直接应用于任何现有的FDTD内核,如并行或硬件加速版本。该方法在专业的EM FDTD软件包框架内实现,已开发用于在实际应用(如移动电话)上进行应用和测试。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Accurate Treatment of Arbitrarily Curved 3D Thin Conductive Sheets in Real-World FDTD Applications
A novel method is proposed to treat thin conductive (TC) sheets of arbitrary three-dimensional shape and curvature with the electromagnetic (EM) finite-difference time-domain (FDTD) algorithm without the need to resolve the sheet thickness spatially. It is shown that due their physical properties. TC sheets can be modeled without introducing additional field components to the conventional Yee scheme. Due to this noninvasive approach, in addition to the preserved stability of the FDTD algorithm. the method can be directly applied to any existing FDTD kernel, such as parallelized or hardware accelerated versions. The method, implemented within the framework of a professional EM FDTD software package, has been developed to be applied to and tested on real-world applications such as mobile phones.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Spatially Dispersive Finite-Difference Time-Domain Modelling of the Wire Medium for Subwavelength Imaging Elliptical Antenna with Circular Cuts for UWB applications Combination of Full Wave Simulations and Equivalent Circuit Models in Predicting Coupling between Antenna Element and Nearby Object in Mobile Phone Conformal Archimedian Spiral Antenna Above a Cylindrical Groundplane Compact Tri-Band Printed Monopole Antenna
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1