多通道自动语音识别系统中自适应在线数据融合方法

R. Ivanov, M. Momchedjikov
{"title":"多通道自动语音识别系统中自适应在线数据融合方法","authors":"R. Ivanov, M. Momchedjikov","doi":"10.1109/ICOSP.2002.1181105","DOIUrl":null,"url":null,"abstract":"In this paper describes a method for adaptive, parameter-independent, on-line channels' weight estimation, based on entropy in the output probabilities from ANN classifiers, rather than the noise level or SNR estimation. A recursive formula for channel combination calculation, based on the approximation of all possible channels combination, is deduced. The proposed method has been used to develop a multi-channel distributed speech recognition (DSR) system. From experiments a conclusion can be drawn that the use of the proposed method results in an absolute system accuracy improvement of 12.4% in comparison with the base one-channel DSR system from the ETSI Aurora Project.","PeriodicalId":159807,"journal":{"name":"6th International Conference on Signal Processing, 2002.","volume":"100 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2002-08-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Method for adaptive on-line data fusion in multi-channel automatic speech recognition systems\",\"authors\":\"R. Ivanov, M. Momchedjikov\",\"doi\":\"10.1109/ICOSP.2002.1181105\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper describes a method for adaptive, parameter-independent, on-line channels' weight estimation, based on entropy in the output probabilities from ANN classifiers, rather than the noise level or SNR estimation. A recursive formula for channel combination calculation, based on the approximation of all possible channels combination, is deduced. The proposed method has been used to develop a multi-channel distributed speech recognition (DSR) system. From experiments a conclusion can be drawn that the use of the proposed method results in an absolute system accuracy improvement of 12.4% in comparison with the base one-channel DSR system from the ETSI Aurora Project.\",\"PeriodicalId\":159807,\"journal\":{\"name\":\"6th International Conference on Signal Processing, 2002.\",\"volume\":\"100 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2002-08-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"6th International Conference on Signal Processing, 2002.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICOSP.2002.1181105\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"6th International Conference on Signal Processing, 2002.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICOSP.2002.1181105","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文描述了一种基于人工神经网络分类器输出概率中的熵而不是噪声水平或信噪比估计的自适应、参数无关的在线信道权重估计方法。在对所有可能的信道组合进行近似的基础上,推导出信道组合计算的递推公式。该方法已用于多通道分布式语音识别系统的开发。实验结果表明,与ETSI极光计划的基本单通道DSR系统相比,采用该方法的系统绝对精度提高了12.4%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Method for adaptive on-line data fusion in multi-channel automatic speech recognition systems
In this paper describes a method for adaptive, parameter-independent, on-line channels' weight estimation, based on entropy in the output probabilities from ANN classifiers, rather than the noise level or SNR estimation. A recursive formula for channel combination calculation, based on the approximation of all possible channels combination, is deduced. The proposed method has been used to develop a multi-channel distributed speech recognition (DSR) system. From experiments a conclusion can be drawn that the use of the proposed method results in an absolute system accuracy improvement of 12.4% in comparison with the base one-channel DSR system from the ETSI Aurora Project.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Study on canceling intersymbol interference of inverse-GPS Analysis of non-stationary electroencephalogram using the wavelet transformation Generalized kernel function Fisher discriminant for pattern recognition Investigations on distance coding in 3D sound fields Research and implementation of computer simulation system for neural networks
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1