{"title":"协作网络信息物理系统的通信体系结构","authors":"Georg von Zengen, Yannic Schröder, L. Wolf","doi":"10.1109/CCNC.2019.8651834","DOIUrl":null,"url":null,"abstract":"Cyber-Physical Systems (CPSs) are used in various important application areas. Networking of several CPSs, the internal networking of CPSs components as well as the interconnection with other systems, is of major importance with respect to scientific, engineering and technical considerations; yet, it is also very challenging. In this paper we describe an architecture and methods which can be used for various networked CPSs. To base the system design and approaches on realistic requirements and devise suitable methods, we use tightly cooperating, mobile robots as application area. This is an example of challenging CPSs which put high demands on the networking methods. Nevertheless, the considerations are applicable to other CPSs as well. In order to enable networked mobile robots to perform individual and cooperative tasks, real-time support and network operations such as merge, split, and synchronize among clusters of such robots are needed. Further, management functions have to be provided which enable independent, but concurrent clusters to allocate and share scarce network resources. In the context of this paper, network resources are considered in a broad sense (e.g., time slots, frequency channels, codes) and assigned by a novel scheduling algorithm. Thus, a schedule means not only a sequence of time slots, but it takes all mentioned dimensions into account.","PeriodicalId":285899,"journal":{"name":"2019 16th IEEE Annual Consumer Communications & Networking Conference (CCNC)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2019-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A Communication Architecture for Cooperative Networked Cyber-Physical Systems\",\"authors\":\"Georg von Zengen, Yannic Schröder, L. Wolf\",\"doi\":\"10.1109/CCNC.2019.8651834\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Cyber-Physical Systems (CPSs) are used in various important application areas. Networking of several CPSs, the internal networking of CPSs components as well as the interconnection with other systems, is of major importance with respect to scientific, engineering and technical considerations; yet, it is also very challenging. In this paper we describe an architecture and methods which can be used for various networked CPSs. To base the system design and approaches on realistic requirements and devise suitable methods, we use tightly cooperating, mobile robots as application area. This is an example of challenging CPSs which put high demands on the networking methods. Nevertheless, the considerations are applicable to other CPSs as well. In order to enable networked mobile robots to perform individual and cooperative tasks, real-time support and network operations such as merge, split, and synchronize among clusters of such robots are needed. Further, management functions have to be provided which enable independent, but concurrent clusters to allocate and share scarce network resources. In the context of this paper, network resources are considered in a broad sense (e.g., time slots, frequency channels, codes) and assigned by a novel scheduling algorithm. Thus, a schedule means not only a sequence of time slots, but it takes all mentioned dimensions into account.\",\"PeriodicalId\":285899,\"journal\":{\"name\":\"2019 16th IEEE Annual Consumer Communications & Networking Conference (CCNC)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2019 16th IEEE Annual Consumer Communications & Networking Conference (CCNC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CCNC.2019.8651834\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2019 16th IEEE Annual Consumer Communications & Networking Conference (CCNC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CCNC.2019.8651834","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
A Communication Architecture for Cooperative Networked Cyber-Physical Systems
Cyber-Physical Systems (CPSs) are used in various important application areas. Networking of several CPSs, the internal networking of CPSs components as well as the interconnection with other systems, is of major importance with respect to scientific, engineering and technical considerations; yet, it is also very challenging. In this paper we describe an architecture and methods which can be used for various networked CPSs. To base the system design and approaches on realistic requirements and devise suitable methods, we use tightly cooperating, mobile robots as application area. This is an example of challenging CPSs which put high demands on the networking methods. Nevertheless, the considerations are applicable to other CPSs as well. In order to enable networked mobile robots to perform individual and cooperative tasks, real-time support and network operations such as merge, split, and synchronize among clusters of such robots are needed. Further, management functions have to be provided which enable independent, but concurrent clusters to allocate and share scarce network resources. In the context of this paper, network resources are considered in a broad sense (e.g., time slots, frequency channels, codes) and assigned by a novel scheduling algorithm. Thus, a schedule means not only a sequence of time slots, but it takes all mentioned dimensions into account.