{"title":"基于高频稳态视觉诱发电位的脑机接口","authors":"Wang Yijun, W. Ruiping, G. Xiaorong, G. Shangkai","doi":"10.1109/ICNIC.2005.1499837","DOIUrl":null,"url":null,"abstract":"Low-frequency steady-state visual evoked potentials (SSVEPs) are used as the input signal in the present SSVEP-based brain-computer interface (BCI). This prototype system has a high information transfer rate. On the other hand, it has some limitations including visual fatigue, false positive, and some possibility of causing a seizure. These drawbacks can be largely eliminated when using high-frequency stimulations. In this paper, we study the amplitude versus stimulation frequency response of SSVEPs. The signal-to-noise ratio versus frequency curve suggests that the high-frequency SSVEP (>20Hz) could help to construct a practical BCI system.","PeriodicalId":169717,"journal":{"name":"Proceedings. 2005 First International Conference on Neural Interface and Control, 2005.","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2005-05-26","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"91","resultStr":"{\"title\":\"Brain-computer interface based on the high-frequency steady-state visual evoked potential\",\"authors\":\"Wang Yijun, W. Ruiping, G. Xiaorong, G. Shangkai\",\"doi\":\"10.1109/ICNIC.2005.1499837\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Low-frequency steady-state visual evoked potentials (SSVEPs) are used as the input signal in the present SSVEP-based brain-computer interface (BCI). This prototype system has a high information transfer rate. On the other hand, it has some limitations including visual fatigue, false positive, and some possibility of causing a seizure. These drawbacks can be largely eliminated when using high-frequency stimulations. In this paper, we study the amplitude versus stimulation frequency response of SSVEPs. The signal-to-noise ratio versus frequency curve suggests that the high-frequency SSVEP (>20Hz) could help to construct a practical BCI system.\",\"PeriodicalId\":169717,\"journal\":{\"name\":\"Proceedings. 2005 First International Conference on Neural Interface and Control, 2005.\",\"volume\":\"10 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2005-05-26\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"91\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings. 2005 First International Conference on Neural Interface and Control, 2005.\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICNIC.2005.1499837\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings. 2005 First International Conference on Neural Interface and Control, 2005.","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICNIC.2005.1499837","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Brain-computer interface based on the high-frequency steady-state visual evoked potential
Low-frequency steady-state visual evoked potentials (SSVEPs) are used as the input signal in the present SSVEP-based brain-computer interface (BCI). This prototype system has a high information transfer rate. On the other hand, it has some limitations including visual fatigue, false positive, and some possibility of causing a seizure. These drawbacks can be largely eliminated when using high-frequency stimulations. In this paper, we study the amplitude versus stimulation frequency response of SSVEPs. The signal-to-noise ratio versus frequency curve suggests that the high-frequency SSVEP (>20Hz) could help to construct a practical BCI system.