{"title":"Everlast:长寿命,超级电容操作的无线传感器节点","authors":"Farhan Simjee, Pai H. Chou","doi":"10.1145/1165573.1165619","DOIUrl":null,"url":null,"abstract":"This paper describes a supercapacitor-operated, solar-powered wireless sensor node called Everlast. Unlike traditional wireless sensors that store energy in batteries, Everlast's use of supercapacitors enables the system to operate for an estimated lifetime of 20 years without any maintenance. The novelty of this system lies in the feedforward, PFM (pulse frequency modulated) converter and open-circuit solar voltage method for maximum power point tracking, enabling the solar cell to efficiently charge the supercapacitor and power the node. Experimental results show that Everlast can achieve low power consumption, long operational lifetime, and high transmission rates, something that traditional sensor nodes cannot achieve simultaneously and must trade-off","PeriodicalId":119229,"journal":{"name":"ISLPED'06 Proceedings of the 2006 International Symposium on Low Power Electronics and Design","volume":"279 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-10-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"289","resultStr":"{\"title\":\"Everlast: Long-life, Supercapacitor-operated Wireless Sensor Node\",\"authors\":\"Farhan Simjee, Pai H. Chou\",\"doi\":\"10.1145/1165573.1165619\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper describes a supercapacitor-operated, solar-powered wireless sensor node called Everlast. Unlike traditional wireless sensors that store energy in batteries, Everlast's use of supercapacitors enables the system to operate for an estimated lifetime of 20 years without any maintenance. The novelty of this system lies in the feedforward, PFM (pulse frequency modulated) converter and open-circuit solar voltage method for maximum power point tracking, enabling the solar cell to efficiently charge the supercapacitor and power the node. Experimental results show that Everlast can achieve low power consumption, long operational lifetime, and high transmission rates, something that traditional sensor nodes cannot achieve simultaneously and must trade-off\",\"PeriodicalId\":119229,\"journal\":{\"name\":\"ISLPED'06 Proceedings of the 2006 International Symposium on Low Power Electronics and Design\",\"volume\":\"279 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2006-10-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"289\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ISLPED'06 Proceedings of the 2006 International Symposium on Low Power Electronics and Design\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/1165573.1165619\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ISLPED'06 Proceedings of the 2006 International Symposium on Low Power Electronics and Design","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/1165573.1165619","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
This paper describes a supercapacitor-operated, solar-powered wireless sensor node called Everlast. Unlike traditional wireless sensors that store energy in batteries, Everlast's use of supercapacitors enables the system to operate for an estimated lifetime of 20 years without any maintenance. The novelty of this system lies in the feedforward, PFM (pulse frequency modulated) converter and open-circuit solar voltage method for maximum power point tracking, enabling the solar cell to efficiently charge the supercapacitor and power the node. Experimental results show that Everlast can achieve low power consumption, long operational lifetime, and high transmission rates, something that traditional sensor nodes cannot achieve simultaneously and must trade-off