农业企业数据分析与预测

S. Qulmatova, Botirjon Karimov, D. Azimov
{"title":"农业企业数据分析与预测","authors":"S. Qulmatova, Botirjon Karimov, D. Azimov","doi":"10.1145/3584202.3584282","DOIUrl":null,"url":null,"abstract":"In economic-statistical modeling, the use of a linear regression model gives high results in the analysis of the relationship between economic indicators and production factors. The article analyzes the relationship between the volume of agricultural production and agricultural techniques using multiple regression models. As we know, it is important to get a better result for the decline of multiple regression. It is important to normalize the data set using feature-scaling techniques to get a good accuracy of the results. In this experiment, we also worked with scaling the dataset. First, we tried standard scalers algorithm and calculated the loss using the mean square error. In this way we achieved an accuracy of regression of mean square error 2.48, residual (between and ) sum of square is 6.16 and mean square error 1.03 terms. This work proves what can be predicted from multiple regressions and provides a guide to the impact of techniques on agricultural production.","PeriodicalId":438341,"journal":{"name":"Proceedings of the 6th International Conference on Future Networks & Distributed Systems","volume":"57 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"DATA ANALYSIS AND FORECASTING IN AGRICULTURAL ENTERPRISES\",\"authors\":\"S. Qulmatova, Botirjon Karimov, D. Azimov\",\"doi\":\"10.1145/3584202.3584282\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In economic-statistical modeling, the use of a linear regression model gives high results in the analysis of the relationship between economic indicators and production factors. The article analyzes the relationship between the volume of agricultural production and agricultural techniques using multiple regression models. As we know, it is important to get a better result for the decline of multiple regression. It is important to normalize the data set using feature-scaling techniques to get a good accuracy of the results. In this experiment, we also worked with scaling the dataset. First, we tried standard scalers algorithm and calculated the loss using the mean square error. In this way we achieved an accuracy of regression of mean square error 2.48, residual (between and ) sum of square is 6.16 and mean square error 1.03 terms. This work proves what can be predicted from multiple regressions and provides a guide to the impact of techniques on agricultural production.\",\"PeriodicalId\":438341,\"journal\":{\"name\":\"Proceedings of the 6th International Conference on Future Networks & Distributed Systems\",\"volume\":\"57 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-12-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 6th International Conference on Future Networks & Distributed Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3584202.3584282\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 6th International Conference on Future Networks & Distributed Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3584202.3584282","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

在经济统计建模中,使用线性回归模型在分析经济指标与生产要素之间的关系方面具有很高的效果。本文运用多元回归模型分析了农业产量与农业技术之间的关系。正如我们所知,对于多元回归的衰落,得到一个更好的结果是很重要的。使用特征缩放技术对数据集进行归一化以获得良好的结果准确性是很重要的。在这个实验中,我们还研究了数据集的缩放。首先,我们尝试了标准标量算法,并利用均方误差计算了损失。通过这种方法,我们获得了均方误差2.48,残差(和)平方和6.16,均方误差1.03项的回归精度。这项工作证明了多重回归可以预测什么,并为技术对农业生产的影响提供了指导。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
DATA ANALYSIS AND FORECASTING IN AGRICULTURAL ENTERPRISES
In economic-statistical modeling, the use of a linear regression model gives high results in the analysis of the relationship between economic indicators and production factors. The article analyzes the relationship between the volume of agricultural production and agricultural techniques using multiple regression models. As we know, it is important to get a better result for the decline of multiple regression. It is important to normalize the data set using feature-scaling techniques to get a good accuracy of the results. In this experiment, we also worked with scaling the dataset. First, we tried standard scalers algorithm and calculated the loss using the mean square error. In this way we achieved an accuracy of regression of mean square error 2.48, residual (between and ) sum of square is 6.16 and mean square error 1.03 terms. This work proves what can be predicted from multiple regressions and provides a guide to the impact of techniques on agricultural production.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
EXPERIENCE IN USING BIG DATA TECHNOLOGY FOR DIGITALIZATION OF INFORMATION ENSURING THE SMOOTH OPERATION OF PHYSICAL TECHNOLOGY COMPANIES IN DISTRIBUTED ENVIRONMENTS IMPROVING OPTICAL PROPERTIES OF POLYVINYL ALCOHOL (PVA) AND CARBOXYMETHYL CELLULOSE (CMC) AS POLYMER BLEND FILMS (CMC-PVA) A Layered Taxonomy of Internet of Things Attacks Blockchain-based solutions for Cloud Computing Security: A Survey
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1