一种基于改进TFIDF的文本特征选择算法

Cheng-San Yang, Xingshi He
{"title":"一种基于改进TFIDF的文本特征选择算法","authors":"Cheng-San Yang, Xingshi He","doi":"10.1109/CCPR.2008.87","DOIUrl":null,"url":null,"abstract":"In Chinese text categorization system, for most classifiers using vector space model (VSM), all attributes of documents construct a high dimensional feature space. And the high dimensionality of feature space is the bottleneck of categorization. TFIDF is a kind of common methods used to measure the terms in a document. The method is easy but it doesn't consider the unbalance distribution of terms among classes. This paper analyzed the TFIDF feature selection algorithm deeply, and proposed a new TFIDF feature selection method based on Gini index theory. Experimental results show the method is valid in improving the accuracy of text categorization.","PeriodicalId":292956,"journal":{"name":"2008 Chinese Conference on Pattern Recognition","volume":"65 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2008-10-31","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"A Text Feature Selection Algorithm Based on Improved TFIDF\",\"authors\":\"Cheng-San Yang, Xingshi He\",\"doi\":\"10.1109/CCPR.2008.87\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In Chinese text categorization system, for most classifiers using vector space model (VSM), all attributes of documents construct a high dimensional feature space. And the high dimensionality of feature space is the bottleneck of categorization. TFIDF is a kind of common methods used to measure the terms in a document. The method is easy but it doesn't consider the unbalance distribution of terms among classes. This paper analyzed the TFIDF feature selection algorithm deeply, and proposed a new TFIDF feature selection method based on Gini index theory. Experimental results show the method is valid in improving the accuracy of text categorization.\",\"PeriodicalId\":292956,\"journal\":{\"name\":\"2008 Chinese Conference on Pattern Recognition\",\"volume\":\"65 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2008-10-31\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2008 Chinese Conference on Pattern Recognition\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CCPR.2008.87\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2008 Chinese Conference on Pattern Recognition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CCPR.2008.87","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

在中文文本分类系统中,对于大多数使用向量空间模型(VSM)的分类器,文档的所有属性都构建了一个高维特征空间。而特征空间的高维是分类的瓶颈。TFIDF是一种用于度量文档中术语的常用方法。该方法简单,但没有考虑类间项分布的不平衡。本文对TFIDF特征选择算法进行了深入分析,提出了一种基于基尼指数理论的TFIDF特征选择新方法。实验结果表明,该方法可以有效地提高文本分类的准确率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Text Feature Selection Algorithm Based on Improved TFIDF
In Chinese text categorization system, for most classifiers using vector space model (VSM), all attributes of documents construct a high dimensional feature space. And the high dimensionality of feature space is the bottleneck of categorization. TFIDF is a kind of common methods used to measure the terms in a document. The method is easy but it doesn't consider the unbalance distribution of terms among classes. This paper analyzed the TFIDF feature selection algorithm deeply, and proposed a new TFIDF feature selection method based on Gini index theory. Experimental results show the method is valid in improving the accuracy of text categorization.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
A Novel Gait Recognition Method Based on Standard Deviation Energy Image A New Method for Facial Beauty Assessment Content-Based Semantic Indexing of Image using Fuzzy Support Vector Machines Stochastic Segment Model Decoding Algorithm Based on Neighboring Segments and its Application in LVCSR Study on Highlights Detection in Soccer Video Based on the Location of Slow Motion Replay and Goal Net Recognition
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1