使用状态-动作对预测的未来运动决策

Masashi Sugimoto, K. Kurashige
{"title":"使用状态-动作对预测的未来运动决策","authors":"Masashi Sugimoto, K. Kurashige","doi":"10.17781/p001896","DOIUrl":null,"url":null,"abstract":"Robots that works in a dynamic environment must possess, the ability to autonomously cope with the changes in the environment. This paper proposes an approach to predict changes in the state and actions of robots. Further, this approach attempts to apply predicted future actions to current actions. This method predicts the robot’s state and action for the distant future using the states that the robot adopts repeatedly. Using this method, the actions that the robot will take in the future can be predicted. The method proposed in this paper predicts the state and action of a robot each time it decides to perform an action. In particular, this paper focuses on defining weight coefficients, using the characteristics of the future prediction results. Using this method, the compensatory current action will be obtained. This paper presents the results of our study and discusses methods that allow the robot to quickly determine its most desirable action, using state prediction and optimal control methods.","PeriodicalId":211757,"journal":{"name":"International journal of new computer architectures and their applications","volume":"548 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"1900-01-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"4","resultStr":"{\"title\":\"FUTURE MOTION DECISIONS USING STATE-ACTION PAIR PREDICTIONS\",\"authors\":\"Masashi Sugimoto, K. Kurashige\",\"doi\":\"10.17781/p001896\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Robots that works in a dynamic environment must possess, the ability to autonomously cope with the changes in the environment. This paper proposes an approach to predict changes in the state and actions of robots. Further, this approach attempts to apply predicted future actions to current actions. This method predicts the robot’s state and action for the distant future using the states that the robot adopts repeatedly. Using this method, the actions that the robot will take in the future can be predicted. The method proposed in this paper predicts the state and action of a robot each time it decides to perform an action. In particular, this paper focuses on defining weight coefficients, using the characteristics of the future prediction results. Using this method, the compensatory current action will be obtained. This paper presents the results of our study and discusses methods that allow the robot to quickly determine its most desirable action, using state prediction and optimal control methods.\",\"PeriodicalId\":211757,\"journal\":{\"name\":\"International journal of new computer architectures and their applications\",\"volume\":\"548 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"1900-01-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"4\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"International journal of new computer architectures and their applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.17781/p001896\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"International journal of new computer architectures and their applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.17781/p001896","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 4

摘要

在动态环境中工作的机器人必须具备自主应对环境变化的能力。本文提出了一种预测机器人状态和动作变化的方法。此外,这种方法试图将预测的未来行为应用于当前行为。该方法利用机器人反复采用的状态来预测机器人在遥远未来的状态和动作。利用这种方法,可以预测机器人未来将要采取的行动。本文提出的方法在机器人每次决定执行动作时预测其状态和动作。特别是,本文着重于利用未来预测结果的特征来定义权重系数。利用这种方法,可以得到补偿电流动作。本文介绍了我们的研究结果,并讨论了使用状态预测和最优控制方法使机器人快速确定其最理想动作的方法。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
FUTURE MOTION DECISIONS USING STATE-ACTION PAIR PREDICTIONS
Robots that works in a dynamic environment must possess, the ability to autonomously cope with the changes in the environment. This paper proposes an approach to predict changes in the state and actions of robots. Further, this approach attempts to apply predicted future actions to current actions. This method predicts the robot’s state and action for the distant future using the states that the robot adopts repeatedly. Using this method, the actions that the robot will take in the future can be predicted. The method proposed in this paper predicts the state and action of a robot each time it decides to perform an action. In particular, this paper focuses on defining weight coefficients, using the characteristics of the future prediction results. Using this method, the compensatory current action will be obtained. This paper presents the results of our study and discusses methods that allow the robot to quickly determine its most desirable action, using state prediction and optimal control methods.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Introduction to Sociology of Online Social Networks in Morocco. Data Acquisition Process: Results and Connectivity Analysis SLA-BASED RESOURCE ALLOCATION WITHIN CLOUD NETWORKING ENVIRONMENT Proportional Weighted Round Robin: A Proportional Share CPU Scheduler inTime Sharing Systems Variation Effect of Silicon Film Thickness on Electrical Properties of NANOMOSFET CAUSALITY ISSUES IN ORIENTATION CONTROL OF AN UNDER-ACTUATED DRILL MACHINE
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1