{"title":"通过参与媒体实现实时照明渲染的数学近似","authors":"P. Lecocq, A. Kemeny, Sylvain Michelin, D. Arquès","doi":"10.1109/PCCGA.2000.883965","DOIUrl":null,"url":null,"abstract":"Many shading models are able to provide realistic rendering of lighting effects under various atmospheric conditions but computational times are often expensive. This paper proposes a method to render lighting effects within participating media in real-time on a graphics workstation. It consists of mathematical approximations based on a re-formulation of the light transport equation considering atmospheric scattering with light sources described by their luminous intensity distribution. Hardware capabilities of graphics computer boards are used to accelerate parts of the rendering process.","PeriodicalId":342067,"journal":{"name":"Proceedings the Eighth Pacific Conference on Computer Graphics and Applications","volume":"24 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2000-10-03","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"13","resultStr":"{\"title\":\"Mathematical approximation for real-time lighting rendering through participating media\",\"authors\":\"P. Lecocq, A. Kemeny, Sylvain Michelin, D. Arquès\",\"doi\":\"10.1109/PCCGA.2000.883965\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Many shading models are able to provide realistic rendering of lighting effects under various atmospheric conditions but computational times are often expensive. This paper proposes a method to render lighting effects within participating media in real-time on a graphics workstation. It consists of mathematical approximations based on a re-formulation of the light transport equation considering atmospheric scattering with light sources described by their luminous intensity distribution. Hardware capabilities of graphics computer boards are used to accelerate parts of the rendering process.\",\"PeriodicalId\":342067,\"journal\":{\"name\":\"Proceedings the Eighth Pacific Conference on Computer Graphics and Applications\",\"volume\":\"24 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2000-10-03\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"13\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings the Eighth Pacific Conference on Computer Graphics and Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/PCCGA.2000.883965\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings the Eighth Pacific Conference on Computer Graphics and Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/PCCGA.2000.883965","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Mathematical approximation for real-time lighting rendering through participating media
Many shading models are able to provide realistic rendering of lighting effects under various atmospheric conditions but computational times are often expensive. This paper proposes a method to render lighting effects within participating media in real-time on a graphics workstation. It consists of mathematical approximations based on a re-formulation of the light transport equation considering atmospheric scattering with light sources described by their luminous intensity distribution. Hardware capabilities of graphics computer boards are used to accelerate parts of the rendering process.