高分辨率稀疏组Lasso SAR图像参数的自动学习

Wei Liu, Hanwen Xu, Cheng Fang, Lei Yang, Weidong Jiao
{"title":"高分辨率稀疏组Lasso SAR图像参数的自动学习","authors":"Wei Liu, Hanwen Xu, Cheng Fang, Lei Yang, Weidong Jiao","doi":"10.1109/IC-NIDC54101.2021.9660447","DOIUrl":null,"url":null,"abstract":"Aiming at the problem of adjusting the penalty term coefficient of feature enhancement in high-resolution synthetic aperture radar (SAR) imaging, a marginal estimation Bayes (MEB) algorithm is proposed, so that the prior features of the target can be fitted properly to improve the accuracy of image feature extraction. Firstly, the alternating direction method of multipliers (ADMM) convex optimization framework is modeled based on the echoed data, and least absolute shrinkage and selection operator (Lasso) model and sparse group Lasso (SG-Lasso) model are introduced, then the maximum marginal likelihood distribution of the regularization parameters is derived. Moreover, the Moreau Yoshida unadjusted Langevin algorithm (MYULA) is used to realize target posteriori sampling solution. Because the posterior distribution is difficult to solve, the gradient projection method is introduced to estimate the regularization parameters. Finally, auto-learning parameters are used to optimize the imaging. The proposed algorithm can not only estimate the parameters of a single regularization term, but also estimate the parameters of multiple regularization terms. Aiming at non-differentiable part in the prior, MYULA is adopted to calculate the subgradient of the non-differentiable posterior distribution. Therefore, the proposed algorithm is capable of auto-leaning parameters even regularization function is non-differentiable. In the experimental part, compared with the optimal value of manual debugging, the error between the proposed method and the optimal value is within 15%, and the effectiveness of the algorithm are verified by phase transition diagram (PTD).","PeriodicalId":264468,"journal":{"name":"2021 7th IEEE International Conference on Network Intelligence and Digital Content (IC-NIDC)","volume":"276 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-11-17","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Auto-Learning of Parameters for High Resolution Sparse Group Lasso SAR Imagery\",\"authors\":\"Wei Liu, Hanwen Xu, Cheng Fang, Lei Yang, Weidong Jiao\",\"doi\":\"10.1109/IC-NIDC54101.2021.9660447\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Aiming at the problem of adjusting the penalty term coefficient of feature enhancement in high-resolution synthetic aperture radar (SAR) imaging, a marginal estimation Bayes (MEB) algorithm is proposed, so that the prior features of the target can be fitted properly to improve the accuracy of image feature extraction. Firstly, the alternating direction method of multipliers (ADMM) convex optimization framework is modeled based on the echoed data, and least absolute shrinkage and selection operator (Lasso) model and sparse group Lasso (SG-Lasso) model are introduced, then the maximum marginal likelihood distribution of the regularization parameters is derived. Moreover, the Moreau Yoshida unadjusted Langevin algorithm (MYULA) is used to realize target posteriori sampling solution. Because the posterior distribution is difficult to solve, the gradient projection method is introduced to estimate the regularization parameters. Finally, auto-learning parameters are used to optimize the imaging. The proposed algorithm can not only estimate the parameters of a single regularization term, but also estimate the parameters of multiple regularization terms. Aiming at non-differentiable part in the prior, MYULA is adopted to calculate the subgradient of the non-differentiable posterior distribution. Therefore, the proposed algorithm is capable of auto-leaning parameters even regularization function is non-differentiable. In the experimental part, compared with the optimal value of manual debugging, the error between the proposed method and the optimal value is within 15%, and the effectiveness of the algorithm are verified by phase transition diagram (PTD).\",\"PeriodicalId\":264468,\"journal\":{\"name\":\"2021 7th IEEE International Conference on Network Intelligence and Digital Content (IC-NIDC)\",\"volume\":\"276 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-11-17\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 7th IEEE International Conference on Network Intelligence and Digital Content (IC-NIDC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IC-NIDC54101.2021.9660447\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 7th IEEE International Conference on Network Intelligence and Digital Content (IC-NIDC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IC-NIDC54101.2021.9660447","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

针对高分辨率合成孔径雷达(SAR)成像中特征增强惩罚项系数的调整问题,提出了一种边缘估计贝叶斯(MEB)算法,使目标的先验特征得到适当拟合,提高图像特征提取的精度。首先,基于回波数据建立了交替方向乘子法(ADMM)凸优化框架模型,引入了最小绝对收缩和选择算子(Lasso)模型和稀疏群Lasso (SG-Lasso)模型,推导了正则化参数的最大边际似然分布;此外,采用Moreau - Yoshida unadjusted Langevin算法(MYULA)实现目标后验采样解。由于后验分布难以求解,引入梯度投影法估计正则化参数。最后,利用自学习参数对图像进行优化。该算法不仅可以估计单个正则化项的参数,还可以估计多个正则化项的参数。针对先验中不可微的部分,采用MYULA计算不可微后验分布的次梯度。因此,即使正则化函数不可微,该算法也能自动学习参数。在实验部分,与人工调试的最优值相比,所提方法与最优值的误差在15%以内,并通过相变图(PTD)验证了算法的有效性。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Auto-Learning of Parameters for High Resolution Sparse Group Lasso SAR Imagery
Aiming at the problem of adjusting the penalty term coefficient of feature enhancement in high-resolution synthetic aperture radar (SAR) imaging, a marginal estimation Bayes (MEB) algorithm is proposed, so that the prior features of the target can be fitted properly to improve the accuracy of image feature extraction. Firstly, the alternating direction method of multipliers (ADMM) convex optimization framework is modeled based on the echoed data, and least absolute shrinkage and selection operator (Lasso) model and sparse group Lasso (SG-Lasso) model are introduced, then the maximum marginal likelihood distribution of the regularization parameters is derived. Moreover, the Moreau Yoshida unadjusted Langevin algorithm (MYULA) is used to realize target posteriori sampling solution. Because the posterior distribution is difficult to solve, the gradient projection method is introduced to estimate the regularization parameters. Finally, auto-learning parameters are used to optimize the imaging. The proposed algorithm can not only estimate the parameters of a single regularization term, but also estimate the parameters of multiple regularization terms. Aiming at non-differentiable part in the prior, MYULA is adopted to calculate the subgradient of the non-differentiable posterior distribution. Therefore, the proposed algorithm is capable of auto-leaning parameters even regularization function is non-differentiable. In the experimental part, compared with the optimal value of manual debugging, the error between the proposed method and the optimal value is within 15%, and the effectiveness of the algorithm are verified by phase transition diagram (PTD).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Improving Dense FAQ Retrieval with Synthetic Training A Security Integrated Attestation Scheme for Embedded Devices Zero-Shot Voice Cloning Using Variational Embedding with Attention Mechanism Convolutional Neural Network Based Transmit Power Control for D2D Communication in Unlicensed Spectrum WCD: A New Chinese Online Social Media Dataset for Clickbait Analysis and Detection
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1