视觉和仪表飞行规则在遥控飞机系统中的应用:一种概念方法

M. Finke, P. Sinapius
{"title":"视觉和仪表飞行规则在遥控飞机系统中的应用:一种概念方法","authors":"M. Finke, P. Sinapius","doi":"10.1109/DASC.2016.7778015","DOIUrl":null,"url":null,"abstract":"The non-segregated participation of remotely piloted aircraft systems (RPAS) into civil air traffic is still a big challenge with many open questions, especially in terms of airspace integration, traffic handling and aircraft certification. One of the most basic and most natural regulatory requirements in aviation is the application of flight rules as written down in ICAO Annex II. This existing regulation is on one hand per definition not restricted to manned aviation, on the other hand it points to the need of finding a way to apply these flight rules also to RPAS, which has already been a known key issue for a long period of time, but which is not yet completely solved by now. Many ANSPs impose only few requirements for RPAS operations under instrument flight rules, but the application of visual flight rules to RPAS operations is more demanding, e.g. in terms of detect-and-avoid capabilities, navigation, right-of-way, aerodrome operations and others. Many of the worldwide research activities related to RPAS set the focus on developing technical solutions to reproduce these pilot-typical capabilities such as the see & avoid capability, and it should be just a question of time, until such a sensor-based technology will be available. But the introduction of these devices will most probably imply a significant change in terms of navigation, perception of the aircraft environment and decision making compared to manned aviation. The question how to apply visual and instrument flight rules to RPAS will still not be completely answered. Starting from ICAO's Manual on Remotely Piloted Aircraft Systems (ICAO Doc 10019), this paper looks beyond required technical capabilities and gives a renewed definition of flight rules. This definition is especially designed for both manned and unmanned aviation without significantly changing or lowering the standards for manned aviation. Based on several conceptual studies, which were performed within the scope of the DLR research activities for traffic management and integration of unmanned aircraft, this paper provides a simple guideline for the application of these re-defined - or modernized - flight rules in analogy to the existing rules. It discusses manned and unmanned flight operations in non-segregated and segregated airspace as well as unmanned visual-line-of-sight operations in terms of navigation, surveillance, tactical ATM decision making and flight pre-notification, following existing procedures as far as possible. The basic ideas behind these procedures are outlined, but separately from aspects resulting from distinct technical solutions (such as secondary radar and transponders) or human factors (such as visibility minima) in order to cover the whole bandwidth of manned and unmanned flight operations. In this context, basic terms are also redefined.","PeriodicalId":340472,"journal":{"name":"2016 IEEE/AIAA 35th Digital Avionics Systems Conference (DASC)","volume":"331 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Application of visual and instrument flight rules to remotely piloted aircraft systems: A conceptual approach\",\"authors\":\"M. Finke, P. Sinapius\",\"doi\":\"10.1109/DASC.2016.7778015\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The non-segregated participation of remotely piloted aircraft systems (RPAS) into civil air traffic is still a big challenge with many open questions, especially in terms of airspace integration, traffic handling and aircraft certification. One of the most basic and most natural regulatory requirements in aviation is the application of flight rules as written down in ICAO Annex II. This existing regulation is on one hand per definition not restricted to manned aviation, on the other hand it points to the need of finding a way to apply these flight rules also to RPAS, which has already been a known key issue for a long period of time, but which is not yet completely solved by now. Many ANSPs impose only few requirements for RPAS operations under instrument flight rules, but the application of visual flight rules to RPAS operations is more demanding, e.g. in terms of detect-and-avoid capabilities, navigation, right-of-way, aerodrome operations and others. Many of the worldwide research activities related to RPAS set the focus on developing technical solutions to reproduce these pilot-typical capabilities such as the see & avoid capability, and it should be just a question of time, until such a sensor-based technology will be available. But the introduction of these devices will most probably imply a significant change in terms of navigation, perception of the aircraft environment and decision making compared to manned aviation. The question how to apply visual and instrument flight rules to RPAS will still not be completely answered. Starting from ICAO's Manual on Remotely Piloted Aircraft Systems (ICAO Doc 10019), this paper looks beyond required technical capabilities and gives a renewed definition of flight rules. This definition is especially designed for both manned and unmanned aviation without significantly changing or lowering the standards for manned aviation. Based on several conceptual studies, which were performed within the scope of the DLR research activities for traffic management and integration of unmanned aircraft, this paper provides a simple guideline for the application of these re-defined - or modernized - flight rules in analogy to the existing rules. It discusses manned and unmanned flight operations in non-segregated and segregated airspace as well as unmanned visual-line-of-sight operations in terms of navigation, surveillance, tactical ATM decision making and flight pre-notification, following existing procedures as far as possible. The basic ideas behind these procedures are outlined, but separately from aspects resulting from distinct technical solutions (such as secondary radar and transponders) or human factors (such as visibility minima) in order to cover the whole bandwidth of manned and unmanned flight operations. In this context, basic terms are also redefined.\",\"PeriodicalId\":340472,\"journal\":{\"name\":\"2016 IEEE/AIAA 35th Digital Avionics Systems Conference (DASC)\",\"volume\":\"331 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE/AIAA 35th Digital Avionics Systems Conference (DASC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/DASC.2016.7778015\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE/AIAA 35th Digital Avionics Systems Conference (DASC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DASC.2016.7778015","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

远程驾驶飞机系统(RPAS)在民用空中交通中的非隔离参与仍然是一个巨大的挑战,存在许多悬而未决的问题,特别是在空域整合、交通处理和飞机认证方面。航空方面最基本和最自然的管制要求之一是适用民航组织附件二所载的飞行规则。这一现有规定一方面是每个定义不限于载人航空,另一方面它指出需要找到一种方法,将这些飞行规则也适用于RPAS,这已经是一个已知的关键问题很长一段时间,但到目前为止还没有完全解决。许多ansp对仪表飞行规则下的RPAS操作只提出了很少的要求,但视觉飞行规则对RPAS操作的应用要求更高,例如在探测和避免能力、导航、路权、机场操作等方面。世界范围内许多与RPAS相关的研究活动都将重点放在开发技术解决方案上,以重现这些典型的飞行员能力,如看到和避免能力,这应该只是一个时间问题,直到这种基于传感器的技术可用。但是,与载人航空相比,这些设备的引入很可能意味着在导航、对飞机环境的感知和决策方面的重大变化。如何将目视和仪表飞行规则应用于RPAS的问题仍然没有得到完全的回答。本文从国际民航组织远程驾驶飞机系统手册(ICAO Doc 10019)出发,超越了所需的技术能力,并给出了飞行规则的新定义。这一定义是专门为有人驾驶和无人驾驶航空设计的,不会显著改变或降低有人驾驶航空的标准。本文基于在无人机交通管理与集成DLR研究活动范围内进行的几项概念性研究,为这些重新定义或现代化的飞行规则类比于现有规则的应用提供了一个简单的指导方针。它讨论了在非隔离和隔离空域中的载人和无人飞行操作,以及在导航、监视、战术ATM决策和飞行预通知方面的无人视距操作,并尽可能遵循现有程序。概述了这些程序背后的基本思想,但与不同技术解决方案(如二次雷达和应答器)或人为因素(如最低能见度)所产生的方面分开,以便涵盖载人和无人飞行操作的整个带宽。在这种情况下,基本术语也被重新定义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Application of visual and instrument flight rules to remotely piloted aircraft systems: A conceptual approach
The non-segregated participation of remotely piloted aircraft systems (RPAS) into civil air traffic is still a big challenge with many open questions, especially in terms of airspace integration, traffic handling and aircraft certification. One of the most basic and most natural regulatory requirements in aviation is the application of flight rules as written down in ICAO Annex II. This existing regulation is on one hand per definition not restricted to manned aviation, on the other hand it points to the need of finding a way to apply these flight rules also to RPAS, which has already been a known key issue for a long period of time, but which is not yet completely solved by now. Many ANSPs impose only few requirements for RPAS operations under instrument flight rules, but the application of visual flight rules to RPAS operations is more demanding, e.g. in terms of detect-and-avoid capabilities, navigation, right-of-way, aerodrome operations and others. Many of the worldwide research activities related to RPAS set the focus on developing technical solutions to reproduce these pilot-typical capabilities such as the see & avoid capability, and it should be just a question of time, until such a sensor-based technology will be available. But the introduction of these devices will most probably imply a significant change in terms of navigation, perception of the aircraft environment and decision making compared to manned aviation. The question how to apply visual and instrument flight rules to RPAS will still not be completely answered. Starting from ICAO's Manual on Remotely Piloted Aircraft Systems (ICAO Doc 10019), this paper looks beyond required technical capabilities and gives a renewed definition of flight rules. This definition is especially designed for both manned and unmanned aviation without significantly changing or lowering the standards for manned aviation. Based on several conceptual studies, which were performed within the scope of the DLR research activities for traffic management and integration of unmanned aircraft, this paper provides a simple guideline for the application of these re-defined - or modernized - flight rules in analogy to the existing rules. It discusses manned and unmanned flight operations in non-segregated and segregated airspace as well as unmanned visual-line-of-sight operations in terms of navigation, surveillance, tactical ATM decision making and flight pre-notification, following existing procedures as far as possible. The basic ideas behind these procedures are outlined, but separately from aspects resulting from distinct technical solutions (such as secondary radar and transponders) or human factors (such as visibility minima) in order to cover the whole bandwidth of manned and unmanned flight operations. In this context, basic terms are also redefined.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Trajectory optimisation for avionics-based GNSS integrity augmentation system Modeling standard for distributed control systems: IEC 61499 from industrial automation to aerospace Ontological knowledge representation for avionics decision-making support Conflict resolution for wind-optimal aircraft trajectories in North Atlantic oceanic airspace with wind uncertainties Flexible open architecture for UASs integration into the airspace: Paparazzi autopilot system
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1