语音到文本任务的任务感知多任务学习

S. Indurthi, Mohd Abbas Zaidi, Nikhil Kumar Lakumarapu, Beomseok Lee, HyoJung Han, Seokchan Ahn, Sangha Kim, Chanwoo Kim, Inchul Hwang
{"title":"语音到文本任务的任务感知多任务学习","authors":"S. Indurthi, Mohd Abbas Zaidi, Nikhil Kumar Lakumarapu, Beomseok Lee, HyoJung Han, Seokchan Ahn, Sangha Kim, Chanwoo Kim, Inchul Hwang","doi":"10.1109/ICASSP39728.2021.9414703","DOIUrl":null,"url":null,"abstract":"In general, the direct Speech-to-text translation (ST) is jointly trained with Automatic Speech Recognition (ASR), and Machine Translation (MT) tasks. However, the issues with the current joint learning strategies inhibit the knowledge transfer across these tasks. We propose a task modulation network which allows the model to learn task specific features, while learning the shared features simultaneously. This proposed approach removes the need for separate finetuning step resulting in a single model which performs all these tasks. This single model achieves a performance of 28.64 BLEU score on ST MuST-C English-German, WER of 11.61% on ASR TEDLium v3, 23.35 BLEU score on MT WMT’15 English-German task. This sets a new state-of-the-art performance (SOTA) on the ST task while outperforming the existing end-to-end ASR systems.","PeriodicalId":347060,"journal":{"name":"ICASSP 2021 - 2021 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2021-06-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"18","resultStr":"{\"title\":\"Task Aware Multi-Task Learning for Speech to Text Tasks\",\"authors\":\"S. Indurthi, Mohd Abbas Zaidi, Nikhil Kumar Lakumarapu, Beomseok Lee, HyoJung Han, Seokchan Ahn, Sangha Kim, Chanwoo Kim, Inchul Hwang\",\"doi\":\"10.1109/ICASSP39728.2021.9414703\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In general, the direct Speech-to-text translation (ST) is jointly trained with Automatic Speech Recognition (ASR), and Machine Translation (MT) tasks. However, the issues with the current joint learning strategies inhibit the knowledge transfer across these tasks. We propose a task modulation network which allows the model to learn task specific features, while learning the shared features simultaneously. This proposed approach removes the need for separate finetuning step resulting in a single model which performs all these tasks. This single model achieves a performance of 28.64 BLEU score on ST MuST-C English-German, WER of 11.61% on ASR TEDLium v3, 23.35 BLEU score on MT WMT’15 English-German task. This sets a new state-of-the-art performance (SOTA) on the ST task while outperforming the existing end-to-end ASR systems.\",\"PeriodicalId\":347060,\"journal\":{\"name\":\"ICASSP 2021 - 2021 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-06-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"18\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"ICASSP 2021 - 2021 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICASSP39728.2021.9414703\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"ICASSP 2021 - 2021 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICASSP39728.2021.9414703","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 18

摘要

一般来说,直接语音到文本翻译(ST)是与自动语音识别(ASR)和机器翻译(MT)任务联合训练的。然而,当前联合学习策略的问题阻碍了这些任务之间的知识转移。我们提出了一种任务调制网络,它允许模型在学习任务特定特征的同时学习共享特征。这种建议的方法不需要单独的调优步骤,从而产生执行所有这些任务的单个模型。该单一模型在ST MuST-C English-German上的性能为28.64 BLEU分,在ASR TEDLium v3上的性能为11.61%,在MT WMT’15 English-German任务上的性能为23.35 BLEU分。这在ST任务上设置了新的最先进的性能(SOTA),同时优于现有的端到端ASR系统。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Task Aware Multi-Task Learning for Speech to Text Tasks
In general, the direct Speech-to-text translation (ST) is jointly trained with Automatic Speech Recognition (ASR), and Machine Translation (MT) tasks. However, the issues with the current joint learning strategies inhibit the knowledge transfer across these tasks. We propose a task modulation network which allows the model to learn task specific features, while learning the shared features simultaneously. This proposed approach removes the need for separate finetuning step resulting in a single model which performs all these tasks. This single model achieves a performance of 28.64 BLEU score on ST MuST-C English-German, WER of 11.61% on ASR TEDLium v3, 23.35 BLEU score on MT WMT’15 English-German task. This sets a new state-of-the-art performance (SOTA) on the ST task while outperforming the existing end-to-end ASR systems.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Subspace Oddity - Optimization on Product of Stiefel Manifolds for EEG Data Recognition of Dynamic Hand Gesture Based on Mm-Wave Fmcw Radar Micro-Doppler Signatures Multi-Decoder Dprnn: Source Separation for Variable Number of Speakers Topic-Aware Dialogue Generation with Two-Hop Based Graph Attention On The Accuracy Limit of Joint Time-Delay/Doppler/Acceleration Estimation with a Band-Limited Signal
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1