从加密包级流量中导出YouTube播放阶段

Stefan Geissler, Stanislav Lange, Florian Wamser, T. Hossfeld
{"title":"从加密包级流量中导出YouTube播放阶段","authors":"Stefan Geissler, Stanislav Lange, Florian Wamser, T. Hossfeld","doi":"10.1109/ITC30.2018.00023","DOIUrl":null,"url":null,"abstract":"From the point of view of telecommunication providers, video streaming is one of the most demanding applications in today's Internet. Over 73% of the total global network traffic has been attributed to video streaming applications in 2017. In this work, we provide a first step towards a better understanding of the packet level behavior of video streaming traffic to enable more efficient traffic engineering in the future. We perform a measurement study with the popular video streaming platform YouTube and show that the different playout phases of a video streaming session can not only be observed by evaluating application layer metrics, but also from raw and encrypted packet level traces.","PeriodicalId":159861,"journal":{"name":"2018 30th International Teletraffic Congress (ITC 30)","volume":"5 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Deriving YouTube Playout Phases from Encrypted Packet Level Traffic\",\"authors\":\"Stefan Geissler, Stanislav Lange, Florian Wamser, T. Hossfeld\",\"doi\":\"10.1109/ITC30.2018.00023\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"From the point of view of telecommunication providers, video streaming is one of the most demanding applications in today's Internet. Over 73% of the total global network traffic has been attributed to video streaming applications in 2017. In this work, we provide a first step towards a better understanding of the packet level behavior of video streaming traffic to enable more efficient traffic engineering in the future. We perform a measurement study with the popular video streaming platform YouTube and show that the different playout phases of a video streaming session can not only be observed by evaluating application layer metrics, but also from raw and encrypted packet level traces.\",\"PeriodicalId\":159861,\"journal\":{\"name\":\"2018 30th International Teletraffic Congress (ITC 30)\",\"volume\":\"5 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 30th International Teletraffic Congress (ITC 30)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ITC30.2018.00023\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 30th International Teletraffic Congress (ITC 30)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ITC30.2018.00023","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

从电信提供商的角度来看,视频流是当今互联网中要求最高的应用之一。2017年,超过73%的全球网络流量归因于视频流应用。在这项工作中,我们为更好地理解视频流流量的分组级行为提供了第一步,以便在未来实现更有效的流量工程。我们对流行的视频流平台YouTube进行了测量研究,并表明视频流会话的不同播放阶段不仅可以通过评估应用层指标来观察,还可以从原始和加密的数据包级别跟踪来观察。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Deriving YouTube Playout Phases from Encrypted Packet Level Traffic
From the point of view of telecommunication providers, video streaming is one of the most demanding applications in today's Internet. Over 73% of the total global network traffic has been attributed to video streaming applications in 2017. In this work, we provide a first step towards a better understanding of the packet level behavior of video streaming traffic to enable more efficient traffic engineering in the future. We perform a measurement study with the popular video streaming platform YouTube and show that the different playout phases of a video streaming session can not only be observed by evaluating application layer metrics, but also from raw and encrypted packet level traces.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Enabling a Win-Win Coexistence Mechanism for WiFi and LTE in Unlicensed Bands Integrating Fractional Brownian Motion Arrivals into the Statistical Network Calculus Statistical Delay Bounds for Automatic Repeat Request Protocols with Pipelining Time Constrained Service-Aware Migration of Virtualized Services for Mobile Edge Computing [Copyright notice]
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1