在全玻璃微流控网络中集成电润湿技术

N. Lovecchio, G. Sacco, G. Petrucci, V. Fiore, C. Toti, G. Cesare, D. Caputo, M. Nardecchia, F. Costantini, A. Nascetti
{"title":"在全玻璃微流控网络中集成电润湿技术","authors":"N. Lovecchio, G. Sacco, G. Petrucci, V. Fiore, C. Toti, G. Cesare, D. Caputo, M. Nardecchia, F. Costantini, A. Nascetti","doi":"10.1109/IWASI.2017.7974256","DOIUrl":null,"url":null,"abstract":"This paper presents a low temperature technological process ahle to integrate an all-glass microfluidic network with an ElectroWetting On Dielectric (EWOD) structure for the digital handling of liquids. The fluidic channels result from the wet-etching of the glass, while the electrodes necessary for the droplet movement are deposited on the bottom and top surfaces of the microfluidic structure. The bottom electrodes are produced by a selective and sequential photolithographic pattern of a stack of metals, insulation layer and hydrophobic film. The top common electrode is made by a continuous transparent conductive oxide, covered by a hydrophobic layer. Compatibility of the technological steps and mechanical robustness of the proposed device have been tested designing and fabricating a microfluidic network integrating a central chamber, with a volume of about 9 μΐ, two reservoirs, two microfluidic channels and 26 EWOD electrodes. The maximum temperature reached during the device fabrication was 330°C, which is two times lower than the one used for the anodic bonding of glass-based microfluidic network.","PeriodicalId":332606,"journal":{"name":"2017 7th IEEE International Workshop on Advances in Sensors and Interfaces (IWASI)","volume":"6 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Integration of electrowetting technology inside an all-glass microfluidic network\",\"authors\":\"N. Lovecchio, G. Sacco, G. Petrucci, V. Fiore, C. Toti, G. Cesare, D. Caputo, M. Nardecchia, F. Costantini, A. Nascetti\",\"doi\":\"10.1109/IWASI.2017.7974256\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a low temperature technological process ahle to integrate an all-glass microfluidic network with an ElectroWetting On Dielectric (EWOD) structure for the digital handling of liquids. The fluidic channels result from the wet-etching of the glass, while the electrodes necessary for the droplet movement are deposited on the bottom and top surfaces of the microfluidic structure. The bottom electrodes are produced by a selective and sequential photolithographic pattern of a stack of metals, insulation layer and hydrophobic film. The top common electrode is made by a continuous transparent conductive oxide, covered by a hydrophobic layer. Compatibility of the technological steps and mechanical robustness of the proposed device have been tested designing and fabricating a microfluidic network integrating a central chamber, with a volume of about 9 μΐ, two reservoirs, two microfluidic channels and 26 EWOD electrodes. The maximum temperature reached during the device fabrication was 330°C, which is two times lower than the one used for the anodic bonding of glass-based microfluidic network.\",\"PeriodicalId\":332606,\"journal\":{\"name\":\"2017 7th IEEE International Workshop on Advances in Sensors and Interfaces (IWASI)\",\"volume\":\"6 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 7th IEEE International Workshop on Advances in Sensors and Interfaces (IWASI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IWASI.2017.7974256\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 7th IEEE International Workshop on Advances in Sensors and Interfaces (IWASI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IWASI.2017.7974256","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

本文提出了一种低温工艺流程,将全玻璃微流控网络与电介质电润湿(EWOD)结构相结合,用于液体的数字化处理。流体通道由玻璃的湿蚀刻产生,而液滴运动所需的电极沉积在微流体结构的底部和顶部表面。底部电极是由一堆金属、绝缘层和疏水薄膜的选择性和顺序光刻图案产生的。顶部的公共电极由连续透明导电氧化物制成,表面覆盖一层疏水层。设计并制造了一个体积约为9 μ μ μ、两个储液器、两个微流控通道和26个EWOD电极的微流控网络,并对其工艺步骤的兼容性和机械鲁棒性进行了测试。器件制造过程中的最高温度为330℃,比玻璃基微流控网络的阳极键合温度低2倍。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Integration of electrowetting technology inside an all-glass microfluidic network
This paper presents a low temperature technological process ahle to integrate an all-glass microfluidic network with an ElectroWetting On Dielectric (EWOD) structure for the digital handling of liquids. The fluidic channels result from the wet-etching of the glass, while the electrodes necessary for the droplet movement are deposited on the bottom and top surfaces of the microfluidic structure. The bottom electrodes are produced by a selective and sequential photolithographic pattern of a stack of metals, insulation layer and hydrophobic film. The top common electrode is made by a continuous transparent conductive oxide, covered by a hydrophobic layer. Compatibility of the technological steps and mechanical robustness of the proposed device have been tested designing and fabricating a microfluidic network integrating a central chamber, with a volume of about 9 μΐ, two reservoirs, two microfluidic channels and 26 EWOD electrodes. The maximum temperature reached during the device fabrication was 330°C, which is two times lower than the one used for the anodic bonding of glass-based microfluidic network.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Development of a multi-lead ECG wearable sensor system for biomedical applications Flexible pressure and proximity sensor surfaces manufactured with organic materials Activation of bottom-up and top-down auditory pathways by US sensors based interface Multiscale Granger causality analysis by à trous wavelet transform Autonomous vehicles: A playground for sensors
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1