SocialFan:将社交网络整合到推荐系统中

B. Díaz-Agudo, Guillermo Jiménez-Díaz, J. A. Recio-García
{"title":"SocialFan:将社交网络整合到推荐系统中","authors":"B. Díaz-Agudo, Guillermo Jiménez-Díaz, J. A. Recio-García","doi":"10.1109/ICTAI.2018.00035","DOIUrl":null,"url":null,"abstract":"Social systems by their definition encourage interaction between users and both on-line content and other users thus generating new sources of knowledge that is valuable for recommender systems. In this paper we deal with the situation of having a recommender system where, even if a social structure implicitly exist, its users are not explicitly connected through a social network. We describe SocialFan, a domain independent tool that allows defining and integrating the social network infrastructure to capture and use the social knowledge into an existing recommender system.","PeriodicalId":254686,"journal":{"name":"2018 IEEE 30th International Conference on Tools with Artificial Intelligence (ICTAI)","volume":"54 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2018-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"SocialFan: Integrating Social Networks Into Recommender Systems\",\"authors\":\"B. Díaz-Agudo, Guillermo Jiménez-Díaz, J. A. Recio-García\",\"doi\":\"10.1109/ICTAI.2018.00035\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Social systems by their definition encourage interaction between users and both on-line content and other users thus generating new sources of knowledge that is valuable for recommender systems. In this paper we deal with the situation of having a recommender system where, even if a social structure implicitly exist, its users are not explicitly connected through a social network. We describe SocialFan, a domain independent tool that allows defining and integrating the social network infrastructure to capture and use the social knowledge into an existing recommender system.\",\"PeriodicalId\":254686,\"journal\":{\"name\":\"2018 IEEE 30th International Conference on Tools with Artificial Intelligence (ICTAI)\",\"volume\":\"54 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2018-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2018 IEEE 30th International Conference on Tools with Artificial Intelligence (ICTAI)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICTAI.2018.00035\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2018 IEEE 30th International Conference on Tools with Artificial Intelligence (ICTAI)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICTAI.2018.00035","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

根据其定义,社会系统鼓励用户与在线内容和其他用户之间的互动,从而产生对推荐系统有价值的新知识来源。在本文中,我们处理推荐系统的情况,即使隐式存在社会结构,其用户也没有通过社会网络显式连接。我们描述了SocialFan,一个独立于领域的工具,它允许定义和集成社交网络基础设施,以捕获和使用社会知识到现有的推荐系统中。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
SocialFan: Integrating Social Networks Into Recommender Systems
Social systems by their definition encourage interaction between users and both on-line content and other users thus generating new sources of knowledge that is valuable for recommender systems. In this paper we deal with the situation of having a recommender system where, even if a social structure implicitly exist, its users are not explicitly connected through a social network. We describe SocialFan, a domain independent tool that allows defining and integrating the social network infrastructure to capture and use the social knowledge into an existing recommender system.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
[Title page i] Enhanced Unsatisfiable Cores for QBF: Weakening Universal to Existential Quantifiers Effective Ant Colony Optimization Solution for the Brazilian Family Health Team Scheduling Problem Exploiting Global Semantic Similarity Biterms for Short-Text Topic Discovery Assigning and Scheduling Service Visits in a Mixed Urban/Rural Setting
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1