基于方面的情感分析的向量空间方法

VS@HLT-NAACL Pub Date : 2015-06-01 DOI:10.3115/v1/W15-1516
Abdulaziz Alghunaim, Mitra Mohtarami, D. S. Cyphers, James R. Glass
{"title":"基于方面的情感分析的向量空间方法","authors":"Abdulaziz Alghunaim, Mitra Mohtarami, D. S. Cyphers, James R. Glass","doi":"10.3115/v1/W15-1516","DOIUrl":null,"url":null,"abstract":"Vector representations for language has been shown to be useful in a number of Natural Language Processing tasks. In this paper, we aim to investigate the effectiveness of word vector representations for the problem of Aspect Based Sentiment Analysis. In particular, we target three sub-tasks namely aspect term extraction, aspect category detection, and aspect sentiment prediction. We investigate the effectiveness of vector representations over different text data and evaluate the quality of domain-dependent vectors. We utilize vector representations to compute various vectorbased features and conduct extensive experiments to demonstrate their effectiveness. Using simple vector based features, we achieve F1 scores of 79.91% for aspect term extraction, 86.75% for category detection, and the accuracy 72.39% for aspect sentiment prediction.","PeriodicalId":299646,"journal":{"name":"VS@HLT-NAACL","volume":"28 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"39","resultStr":"{\"title\":\"A Vector Space Approach for Aspect Based Sentiment Analysis\",\"authors\":\"Abdulaziz Alghunaim, Mitra Mohtarami, D. S. Cyphers, James R. Glass\",\"doi\":\"10.3115/v1/W15-1516\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Vector representations for language has been shown to be useful in a number of Natural Language Processing tasks. In this paper, we aim to investigate the effectiveness of word vector representations for the problem of Aspect Based Sentiment Analysis. In particular, we target three sub-tasks namely aspect term extraction, aspect category detection, and aspect sentiment prediction. We investigate the effectiveness of vector representations over different text data and evaluate the quality of domain-dependent vectors. We utilize vector representations to compute various vectorbased features and conduct extensive experiments to demonstrate their effectiveness. Using simple vector based features, we achieve F1 scores of 79.91% for aspect term extraction, 86.75% for category detection, and the accuracy 72.39% for aspect sentiment prediction.\",\"PeriodicalId\":299646,\"journal\":{\"name\":\"VS@HLT-NAACL\",\"volume\":\"28 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"39\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"VS@HLT-NAACL\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.3115/v1/W15-1516\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"VS@HLT-NAACL","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.3115/v1/W15-1516","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 39

摘要

语言的向量表示已被证明在许多自然语言处理任务中是有用的。在本文中,我们的目的是研究词向量表示在基于方面的情感分析问题中的有效性。我们特别针对三个子任务,即方面术语提取、方面类别检测和方面情感预测。我们研究了不同文本数据上向量表示的有效性,并评估了领域相关向量的质量。我们利用向量表示来计算各种基于向量的特征,并进行了大量的实验来证明其有效性。使用简单的基于向量的特征,我们在方面词提取方面取得了79.91%的F1分数,在类别检测方面取得了86.75%的F1分数,在方面情感预测方面取得了72.39%的准确率。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Vector Space Approach for Aspect Based Sentiment Analysis
Vector representations for language has been shown to be useful in a number of Natural Language Processing tasks. In this paper, we aim to investigate the effectiveness of word vector representations for the problem of Aspect Based Sentiment Analysis. In particular, we target three sub-tasks namely aspect term extraction, aspect category detection, and aspect sentiment prediction. We investigate the effectiveness of vector representations over different text data and evaluate the quality of domain-dependent vectors. We utilize vector representations to compute various vectorbased features and conduct extensive experiments to demonstrate their effectiveness. Using simple vector based features, we achieve F1 scores of 79.91% for aspect term extraction, 86.75% for category detection, and the accuracy 72.39% for aspect sentiment prediction.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Distributional Semantic Concept Models for Entity Relation Discovery Learning Distributed Representations for Multilingual Text Sequences Vector Space Models for Scientific Document Summarization A Deep Architecture for Non-Projective Dependency Parsing Dependency Link Embeddings: Continuous Representations of Syntactic Substructures
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1