基于机器学习的计算网格中进程cpu突发时间估计方法

T. Helmy, Sadam Al-Azani, Omar Bin-Obaidellah
{"title":"基于机器学习的计算网格中进程cpu突发时间估计方法","authors":"T. Helmy, Sadam Al-Azani, Omar Bin-Obaidellah","doi":"10.1109/AIMS.2015.11","DOIUrl":null,"url":null,"abstract":"The implementation of CPU-Scheduling algorithms such as Shortest-Job-First (SJF) and Shortest Remaining Time First (SRTF) is relying on knowing the length of the CPU-bursts for processes in the ready queue. There are several methods to predict the length of the CPU-bursts, such as exponential averaging method, however these methods may not give an accurate or reliable predicted values. In this paper, we will propose a Machine Learning (ML) based approach to estimate the length of the CPU-bursts for processes. The proposed approach aims to select the most significant attributes of the process using feature selection techniques and then predicts the CPU-burst for the process in the grid. ML techniques such as Support Vector Machine (SVM) and K-Nearest Neighbors (K-NN), Artificial Neural Networks (ANN) and Decision Trees (DT) are used to test and evaluate the proposed approach using a grid workload dataset named \"GWA-T-4 Auver Grid\". The experimental results show that there is a strength linear relationship between the process attributes and the burst CPU time. Moreover, K-NN performs better in nearly all approaches in terms of CC and RAE. Furthermore, applying attribute selection techniques improves the performance in terms of space, time and estimation.","PeriodicalId":121874,"journal":{"name":"2015 3rd International Conference on Artificial Intelligence, Modelling and Simulation (AIMS)","volume":"83 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2015-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"14","resultStr":"{\"title\":\"A Machine Learning-Based Approach to Estimate the CPU-Burst Time for Processes in the Computational Grids\",\"authors\":\"T. Helmy, Sadam Al-Azani, Omar Bin-Obaidellah\",\"doi\":\"10.1109/AIMS.2015.11\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The implementation of CPU-Scheduling algorithms such as Shortest-Job-First (SJF) and Shortest Remaining Time First (SRTF) is relying on knowing the length of the CPU-bursts for processes in the ready queue. There are several methods to predict the length of the CPU-bursts, such as exponential averaging method, however these methods may not give an accurate or reliable predicted values. In this paper, we will propose a Machine Learning (ML) based approach to estimate the length of the CPU-bursts for processes. The proposed approach aims to select the most significant attributes of the process using feature selection techniques and then predicts the CPU-burst for the process in the grid. ML techniques such as Support Vector Machine (SVM) and K-Nearest Neighbors (K-NN), Artificial Neural Networks (ANN) and Decision Trees (DT) are used to test and evaluate the proposed approach using a grid workload dataset named \\\"GWA-T-4 Auver Grid\\\". The experimental results show that there is a strength linear relationship between the process attributes and the burst CPU time. Moreover, K-NN performs better in nearly all approaches in terms of CC and RAE. Furthermore, applying attribute selection techniques improves the performance in terms of space, time and estimation.\",\"PeriodicalId\":121874,\"journal\":{\"name\":\"2015 3rd International Conference on Artificial Intelligence, Modelling and Simulation (AIMS)\",\"volume\":\"83 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2015-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"14\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2015 3rd International Conference on Artificial Intelligence, Modelling and Simulation (AIMS)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/AIMS.2015.11\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2015 3rd International Conference on Artificial Intelligence, Modelling and Simulation (AIMS)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/AIMS.2015.11","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 14

摘要

诸如最短作业优先(SJF)和最短剩余时间优先(SRTF)之类的cpu调度算法的实现依赖于知道就绪队列中进程的cpu突发的长度。有几种方法可以预测cpu爆发的长度,例如指数平均法,但是这些方法可能无法给出准确或可靠的预测值。在本文中,我们将提出一种基于机器学习(ML)的方法来估计进程的cpu爆发的长度。该方法旨在利用特征选择技术选择进程最重要的属性,然后在网格中预测进程的cpu突发。ML技术,如支持向量机(SVM)和k -近邻(K-NN),人工神经网络(ANN)和决策树(DT)被用来测试和评估使用名为“GWA-T-4 Auver grid”的网格工作负载数据集提出的方法。实验结果表明,进程属性与突发CPU时间之间存在较强的线性关系。此外,在CC和RAE方面,K-NN在几乎所有方法中都表现得更好。此外,应用属性选择技术在空间、时间和估计方面提高了性能。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Machine Learning-Based Approach to Estimate the CPU-Burst Time for Processes in the Computational Grids
The implementation of CPU-Scheduling algorithms such as Shortest-Job-First (SJF) and Shortest Remaining Time First (SRTF) is relying on knowing the length of the CPU-bursts for processes in the ready queue. There are several methods to predict the length of the CPU-bursts, such as exponential averaging method, however these methods may not give an accurate or reliable predicted values. In this paper, we will propose a Machine Learning (ML) based approach to estimate the length of the CPU-bursts for processes. The proposed approach aims to select the most significant attributes of the process using feature selection techniques and then predicts the CPU-burst for the process in the grid. ML techniques such as Support Vector Machine (SVM) and K-Nearest Neighbors (K-NN), Artificial Neural Networks (ANN) and Decision Trees (DT) are used to test and evaluate the proposed approach using a grid workload dataset named "GWA-T-4 Auver Grid". The experimental results show that there is a strength linear relationship between the process attributes and the burst CPU time. Moreover, K-NN performs better in nearly all approaches in terms of CC and RAE. Furthermore, applying attribute selection techniques improves the performance in terms of space, time and estimation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Real Time Detection and Tracking of Mouth Region of Single Human Face Tamper Detection in Speech Based Access Control Systems Using Watermarking A Clustering Algorithm for WSN to Optimize the Network Lifetime Using Type-2 Fuzzy Logic Model On the Trade-Off between Multi-level Security Classification Accuracy and Training Time An Improved Quality of Service Using R-AODV Protocol in MANETs
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1