一种用于爆开开关的流量压缩发生器非爆试验台

D. Belt, J. Mankowski, A. Neuber, J. Dickens, M. Kristiansen
{"title":"一种用于爆开开关的流量压缩发生器非爆试验台","authors":"D. Belt, J. Mankowski, A. Neuber, J. Dickens, M. Kristiansen","doi":"10.1109/MODSYM.2006.365282","DOIUrl":null,"url":null,"abstract":"Helical flux compression generators (HFCG) of a 50 mm form factor have been shown to produce output energies on the order of ten times the seeded value and a typical deposited energy of 3 kJ into a 3 muH inductor. Our previous work with a non-optimized fuse has produced-100 kV into a 15 load, which leads into a regime relevant for high power microwave (HPM) systems. It is expected that-300 kV can be achieved with the present 2-stage HFCG driving an inductive storage system with electro-exploding fuse. In order to optimize the electro-explosive wire fuse, we have constructed a non-explosive test bed which simulates the HFCG output with high accuracy. We have designed and implemented a capacitor based, magnetic switching scheme to generate the near exponential rise of the HFCG. The varying inductance approach utilizes 4 stages of inductance change and is based upon a piecewise linear regression model of the HFCG waveform. The non-explosive test bed will provide a more efficient method of component testing and has demonstrated positive initial fuse results","PeriodicalId":410776,"journal":{"name":"Conference Record of the 2006 Twenty-Seventh International Power Modulator Symposium","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2006-05-14","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"A Flux Compression Generator Non-Explosive Test Bed for Explosive Opening Switches\",\"authors\":\"D. Belt, J. Mankowski, A. Neuber, J. Dickens, M. Kristiansen\",\"doi\":\"10.1109/MODSYM.2006.365282\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Helical flux compression generators (HFCG) of a 50 mm form factor have been shown to produce output energies on the order of ten times the seeded value and a typical deposited energy of 3 kJ into a 3 muH inductor. Our previous work with a non-optimized fuse has produced-100 kV into a 15 load, which leads into a regime relevant for high power microwave (HPM) systems. It is expected that-300 kV can be achieved with the present 2-stage HFCG driving an inductive storage system with electro-exploding fuse. In order to optimize the electro-explosive wire fuse, we have constructed a non-explosive test bed which simulates the HFCG output with high accuracy. We have designed and implemented a capacitor based, magnetic switching scheme to generate the near exponential rise of the HFCG. The varying inductance approach utilizes 4 stages of inductance change and is based upon a piecewise linear regression model of the HFCG waveform. The non-explosive test bed will provide a more efficient method of component testing and has demonstrated positive initial fuse results\",\"PeriodicalId\":410776,\"journal\":{\"name\":\"Conference Record of the 2006 Twenty-Seventh International Power Modulator Symposium\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2006-05-14\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Conference Record of the 2006 Twenty-Seventh International Power Modulator Symposium\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/MODSYM.2006.365282\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Conference Record of the 2006 Twenty-Seventh International Power Modulator Symposium","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/MODSYM.2006.365282","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

50mm形状的螺旋磁通压缩发生器(HFCG)已被证明可以产生10倍于播种值的输出能量,并且典型的沉积能量为3kj,进入3muh的电感。我们之前使用的非优化保险丝在15负载中产生了-100千伏,这导致了与高功率微波(HPM)系统相关的状态。利用现有的两级HFCG驱动电爆保险丝感应储能系统,预计可达到-300 kV。为了优化电爆丝引信,我们搭建了一个非爆炸试验台,高精度地模拟了电爆丝引信输出。我们设计并实现了一种基于电容的磁开关方案,以产生接近指数的HFCG上升。变电感方法利用4级电感变化,并基于HFCG波形的分段线性回归模型。非爆炸试验台将提供一种更有效的组件测试方法,并已证明了积极的初始熔丝结果
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Flux Compression Generator Non-Explosive Test Bed for Explosive Opening Switches
Helical flux compression generators (HFCG) of a 50 mm form factor have been shown to produce output energies on the order of ten times the seeded value and a typical deposited energy of 3 kJ into a 3 muH inductor. Our previous work with a non-optimized fuse has produced-100 kV into a 15 load, which leads into a regime relevant for high power microwave (HPM) systems. It is expected that-300 kV can be achieved with the present 2-stage HFCG driving an inductive storage system with electro-exploding fuse. In order to optimize the electro-explosive wire fuse, we have constructed a non-explosive test bed which simulates the HFCG output with high accuracy. We have designed and implemented a capacitor based, magnetic switching scheme to generate the near exponential rise of the HFCG. The varying inductance approach utilizes 4 stages of inductance change and is based upon a piecewise linear regression model of the HFCG waveform. The non-explosive test bed will provide a more efficient method of component testing and has demonstrated positive initial fuse results
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Fast discharge, high energy density capacitor performance Series Stacked Switches for Radar Transmitters Biophotonic Studies of Mammalian Cells with Nanosecond Pulsed Power Using Quantum Dots Green-Laser-Triggered Water Switching at 1.6 MegaVolts A Comparison of the AC Breakdown Strength of New and Used Poly-α Olefin Oil to Transformer Oil
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1