异构高性能计算系统上的量子计算模拟器

J. Doi, Hitomi Takahashi, Raymond H. Putra, T. Imamichi, H. Horii
{"title":"异构高性能计算系统上的量子计算模拟器","authors":"J. Doi, Hitomi Takahashi, Raymond H. Putra, T. Imamichi, H. Horii","doi":"10.1145/3310273.3323053","DOIUrl":null,"url":null,"abstract":"Quantum computing simulation on a classical computer is difficult due to the exponential runtime and memory overhead. Previous work addresses the difficulty by utilizing multiple Graphical Processing Units (GPUs) and multi-node computers. GPUs are efficient for handling runtime issues but have limited total accessible memory space. Meanwhile, the memory of a multi-node computer can be scaled to the petabytes order, but its bandwidth for access from host computers (CPUs) is narrow. To simultaneously accelerate simulation and enlarge the total memory space, we propose a heterogeneous parallelization approach by combining GPUs and CPUs. Our simulator allocates memory to the GPUs first, and then to the CPUs. It thus accelerates simulation by using the full capabilities of the GPUs if memory for the simulation fits in the GPUs on a cluster. Allocating memory to the CPUs reduces benefits of the GPUs but enlarges the capacity of qubits in the simulation. In such case, it can exploit the memory of the GPUs to add one more qubit in the simulation if the size of memory in a node is the power of two (such as 512GB). We show empirical performance evaluations of our simulator in a distributed environment of POWER9.","PeriodicalId":431860,"journal":{"name":"Proceedings of the 16th ACM International Conference on Computing Frontiers","volume":"102 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-04-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"23","resultStr":"{\"title\":\"Quantum computing simulator on a heterogenous HPC system\",\"authors\":\"J. Doi, Hitomi Takahashi, Raymond H. Putra, T. Imamichi, H. Horii\",\"doi\":\"10.1145/3310273.3323053\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Quantum computing simulation on a classical computer is difficult due to the exponential runtime and memory overhead. Previous work addresses the difficulty by utilizing multiple Graphical Processing Units (GPUs) and multi-node computers. GPUs are efficient for handling runtime issues but have limited total accessible memory space. Meanwhile, the memory of a multi-node computer can be scaled to the petabytes order, but its bandwidth for access from host computers (CPUs) is narrow. To simultaneously accelerate simulation and enlarge the total memory space, we propose a heterogeneous parallelization approach by combining GPUs and CPUs. Our simulator allocates memory to the GPUs first, and then to the CPUs. It thus accelerates simulation by using the full capabilities of the GPUs if memory for the simulation fits in the GPUs on a cluster. Allocating memory to the CPUs reduces benefits of the GPUs but enlarges the capacity of qubits in the simulation. In such case, it can exploit the memory of the GPUs to add one more qubit in the simulation if the size of memory in a node is the power of two (such as 512GB). We show empirical performance evaluations of our simulator in a distributed environment of POWER9.\",\"PeriodicalId\":431860,\"journal\":{\"name\":\"Proceedings of the 16th ACM International Conference on Computing Frontiers\",\"volume\":\"102 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-04-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"23\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 16th ACM International Conference on Computing Frontiers\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3310273.3323053\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 16th ACM International Conference on Computing Frontiers","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3310273.3323053","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 23

摘要

由于运行时间和内存开销呈指数级增长,在经典计算机上进行量子计算模拟非常困难。以前的工作通过利用多个图形处理单元(gpu)和多节点计算机解决了这个问题。gpu在处理运行时问题方面效率很高,但总的可访问内存空间有限。同时,多节点计算机的内存可以扩展到pb级,但其用于主机(cpu)访问的带宽很窄。为了同时加速仿真和扩大总内存空间,我们提出了一种将gpu和cpu相结合的异构并行化方法。我们的模拟器首先将内存分配给gpu,然后再分配给cpu。因此,它通过使用gpu的全部功能来加速模拟,如果模拟的内存适合集群上的gpu。将内存分配给cpu降低了gpu的优势,但在模拟中增加了量子位的容量。在这种情况下,如果节点的内存大小是2的幂(例如512GB),则可以利用gpu的内存在模拟中添加一个多量子位。我们在POWER9的分布式环境中展示了模拟器的经验性能评估。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Quantum computing simulator on a heterogenous HPC system
Quantum computing simulation on a classical computer is difficult due to the exponential runtime and memory overhead. Previous work addresses the difficulty by utilizing multiple Graphical Processing Units (GPUs) and multi-node computers. GPUs are efficient for handling runtime issues but have limited total accessible memory space. Meanwhile, the memory of a multi-node computer can be scaled to the petabytes order, but its bandwidth for access from host computers (CPUs) is narrow. To simultaneously accelerate simulation and enlarge the total memory space, we propose a heterogeneous parallelization approach by combining GPUs and CPUs. Our simulator allocates memory to the GPUs first, and then to the CPUs. It thus accelerates simulation by using the full capabilities of the GPUs if memory for the simulation fits in the GPUs on a cluster. Allocating memory to the CPUs reduces benefits of the GPUs but enlarges the capacity of qubits in the simulation. In such case, it can exploit the memory of the GPUs to add one more qubit in the simulation if the size of memory in a node is the power of two (such as 512GB). We show empirical performance evaluations of our simulator in a distributed environment of POWER9.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Extending classical processors to support future large scale quantum accelerators Analysing the tor web with high performance graph algorithms The FitOptiVis ECSEL project: highly efficient distributed embedded image/video processing in cyber-physical systems The german informatics society's new ethical guidelines: POSTER Go green radio astronomy: Approximate Computing Perspective: Opportunities and Challenges: POSTER
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1