用人工神经网络估计riig分布参数

A. Mezache, I. Chalabi
{"title":"用人工神经网络估计riig分布参数","authors":"A. Mezache, I. Chalabi","doi":"10.1109/ICSIPA.2013.6708020","DOIUrl":null,"url":null,"abstract":"In order to improve the estimation of the RiIG (Rician Inverse Gaussian) model parameters, the authors attempt to achieve the parameter estimates using the inverse function of the RiIG CDF (Cumulative Distributed Function) which the latter can not be obtained in a closed form. However, the ANN (Artificial Neural Network) technique is preferred which has the ability to approximate this nonlinear complexity. From recorded sea-clutter data, the regressions of the real CDF are used at the input layer of the ANN estimator. The weights of the network are optimized in real time by means of the genetic algorithm (GA) tool. The mean square error of estimates (MSE) criterion is considered to assess the estimation performance. For almost cases, the experimental results show that adopting the proposed scheme of the ANN estimator turns out the best parameter estimates and also allows a better matching of real CDF and real PDF (Probability density Function) than the standard IMLM (Iterative Maximum Likelihood Method) estimator.","PeriodicalId":440373,"journal":{"name":"2013 IEEE International Conference on Signal and Image Processing Applications","volume":"NS24 10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-10-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Estimation of the RiIG-distribution parameters using the Artificial Neural Networks\",\"authors\":\"A. Mezache, I. Chalabi\",\"doi\":\"10.1109/ICSIPA.2013.6708020\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In order to improve the estimation of the RiIG (Rician Inverse Gaussian) model parameters, the authors attempt to achieve the parameter estimates using the inverse function of the RiIG CDF (Cumulative Distributed Function) which the latter can not be obtained in a closed form. However, the ANN (Artificial Neural Network) technique is preferred which has the ability to approximate this nonlinear complexity. From recorded sea-clutter data, the regressions of the real CDF are used at the input layer of the ANN estimator. The weights of the network are optimized in real time by means of the genetic algorithm (GA) tool. The mean square error of estimates (MSE) criterion is considered to assess the estimation performance. For almost cases, the experimental results show that adopting the proposed scheme of the ANN estimator turns out the best parameter estimates and also allows a better matching of real CDF and real PDF (Probability density Function) than the standard IMLM (Iterative Maximum Likelihood Method) estimator.\",\"PeriodicalId\":440373,\"journal\":{\"name\":\"2013 IEEE International Conference on Signal and Image Processing Applications\",\"volume\":\"NS24 10 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-10-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 IEEE International Conference on Signal and Image Processing Applications\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICSIPA.2013.6708020\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 IEEE International Conference on Signal and Image Processing Applications","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICSIPA.2013.6708020","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

为了改进RiIG模型参数的估计,作者尝试使用RiIG CDF (Cumulative Distributed function)的逆函数来实现参数估计,而后者无法以封闭形式获得。然而,人工神经网络技术是首选的,因为它具有近似这种非线性复杂性的能力。从记录的海杂波数据中,在人工神经网络估计器的输入层使用真实CDF的回归。利用遗传算法实时优化网络的权值。采用估计均方误差(MSE)准则来评估估计性能。在大多数情况下,实验结果表明,与标准的IMLM(迭代极大似然法)估计器相比,采用所提出的ANN估计器方案可以得到最佳的参数估计,并且可以更好地匹配真实的CDF和真实的PDF(概率密度函数)。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Estimation of the RiIG-distribution parameters using the Artificial Neural Networks
In order to improve the estimation of the RiIG (Rician Inverse Gaussian) model parameters, the authors attempt to achieve the parameter estimates using the inverse function of the RiIG CDF (Cumulative Distributed Function) which the latter can not be obtained in a closed form. However, the ANN (Artificial Neural Network) technique is preferred which has the ability to approximate this nonlinear complexity. From recorded sea-clutter data, the regressions of the real CDF are used at the input layer of the ANN estimator. The weights of the network are optimized in real time by means of the genetic algorithm (GA) tool. The mean square error of estimates (MSE) criterion is considered to assess the estimation performance. For almost cases, the experimental results show that adopting the proposed scheme of the ANN estimator turns out the best parameter estimates and also allows a better matching of real CDF and real PDF (Probability density Function) than the standard IMLM (Iterative Maximum Likelihood Method) estimator.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
List of reviewers Multi-Level View Synthesis (MLVS) based on Depth Image Layer Separation (DILS) algorithm for multi-camera view system Mouth covered detection for yawn Depth Image Layers Separation (DILS) algorithm of image view synthesis based on stereo vision Accurate videogrammetric data for human limb movement research
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1