定向自组装孔倍增模式的数值布局分析

K. Yamamoto, T. Nakano, M. Muramatsu, H. Genjima, T. Tomita, K. Matsuzaki, T. Kitano
{"title":"定向自组装孔倍增模式的数值布局分析","authors":"K. Yamamoto, T. Nakano, M. Muramatsu, H. Genjima, T. Tomita, K. Matsuzaki, T. Kitano","doi":"10.1117/12.2218596","DOIUrl":null,"url":null,"abstract":"Placement of cylinders in hole multiplication patterns for directed self-assembly is the topic of this computational study. A hole doublet process applying a corner rounded rectangle guide is the focus of this work. Placements including morphology fluctuation can be analyzed by dissipative particle dynamics simulation. When the surface of guides and underlayers are modified from strong polymethyl methacrylate (PMMA) attractive to weak PMMA attractive, two PMMA cylinders can be contacted at the underlayer. Even when the PMMA domain had a separated morphology, hole placement errors (HPE) were similar to those with connected domains which occurred in the strong PMMA affine case. In general, HPE in longitudinal guide direction was larger than in the shorter direction. It is interesting to note that HPE in the longer direction was decreased by increasing the guide size in shorter direction. Cylinder tops likely fluctuate; cylinder middles may fluctuate as well in some cases. Means for HPE reduction were also tested computationally: reducing the guide thickness and employing dimpled structures. Decreasing guide thickness was effective for reducing HPE; however, guide thicknesses that were too thin prevented PMMA domains from forming vertical cylinders. Dimpled structures also reduced HPE. The depth of the dimple had a little influence on the distance of two holes when the guide structure was fitted with hexagonal packing for the block co-polymers.","PeriodicalId":193904,"journal":{"name":"SPIE Advanced Lithography","volume":"35 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Numerical placement analysis in hole multiplication patterns for directed self-assembly\",\"authors\":\"K. Yamamoto, T. Nakano, M. Muramatsu, H. Genjima, T. Tomita, K. Matsuzaki, T. Kitano\",\"doi\":\"10.1117/12.2218596\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Placement of cylinders in hole multiplication patterns for directed self-assembly is the topic of this computational study. A hole doublet process applying a corner rounded rectangle guide is the focus of this work. Placements including morphology fluctuation can be analyzed by dissipative particle dynamics simulation. When the surface of guides and underlayers are modified from strong polymethyl methacrylate (PMMA) attractive to weak PMMA attractive, two PMMA cylinders can be contacted at the underlayer. Even when the PMMA domain had a separated morphology, hole placement errors (HPE) were similar to those with connected domains which occurred in the strong PMMA affine case. In general, HPE in longitudinal guide direction was larger than in the shorter direction. It is interesting to note that HPE in the longer direction was decreased by increasing the guide size in shorter direction. Cylinder tops likely fluctuate; cylinder middles may fluctuate as well in some cases. Means for HPE reduction were also tested computationally: reducing the guide thickness and employing dimpled structures. Decreasing guide thickness was effective for reducing HPE; however, guide thicknesses that were too thin prevented PMMA domains from forming vertical cylinders. Dimpled structures also reduced HPE. The depth of the dimple had a little influence on the distance of two holes when the guide structure was fitted with hexagonal packing for the block co-polymers.\",\"PeriodicalId\":193904,\"journal\":{\"name\":\"SPIE Advanced Lithography\",\"volume\":\"35 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"SPIE Advanced Lithography\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1117/12.2218596\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"SPIE Advanced Lithography","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1117/12.2218596","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

定向自组装的孔倍增模式中圆柱体的放置是本计算研究的主题。采用圆角矩形导向器的双孔工艺是本工作的重点。通过耗散粒子动力学模拟可以分析包含形态波动的位置。当导轨和衬底表面由强聚甲基丙烯酸甲酯(PMMA)吸引改性为弱聚甲基丙烯酸甲酯(PMMA)吸引时,衬底可以接触两个PMMA圆柱体。即使PMMA结构域具有分离的形态,空穴放置误差(HPE)与强PMMA仿射情况下发生的连接结构域相似。总体而言,纵向导向的HPE大于短导向的HPE。有趣的是,在较短的方向上,增加导叶尺寸会降低较长方向上的HPE。汽缸顶部可能会波动;在某些情况下,气缸的中间位置也可能会波动。降低HPE的方法也进行了计算测试:减少波导厚度和采用韧窝结构。减小导叶厚度可有效降低HPE;然而,太薄的导向厚度会阻碍PMMA畴形成垂直圆柱体。凹陷结构也会降低HPE。当嵌段共聚物采用六角形填料时,凹槽深度对两孔间距影响不大。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Numerical placement analysis in hole multiplication patterns for directed self-assembly
Placement of cylinders in hole multiplication patterns for directed self-assembly is the topic of this computational study. A hole doublet process applying a corner rounded rectangle guide is the focus of this work. Placements including morphology fluctuation can be analyzed by dissipative particle dynamics simulation. When the surface of guides and underlayers are modified from strong polymethyl methacrylate (PMMA) attractive to weak PMMA attractive, two PMMA cylinders can be contacted at the underlayer. Even when the PMMA domain had a separated morphology, hole placement errors (HPE) were similar to those with connected domains which occurred in the strong PMMA affine case. In general, HPE in longitudinal guide direction was larger than in the shorter direction. It is interesting to note that HPE in the longer direction was decreased by increasing the guide size in shorter direction. Cylinder tops likely fluctuate; cylinder middles may fluctuate as well in some cases. Means for HPE reduction were also tested computationally: reducing the guide thickness and employing dimpled structures. Decreasing guide thickness was effective for reducing HPE; however, guide thicknesses that were too thin prevented PMMA domains from forming vertical cylinders. Dimpled structures also reduced HPE. The depth of the dimple had a little influence on the distance of two holes when the guide structure was fitted with hexagonal packing for the block co-polymers.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
SEM based overlay measurement between resist and buried patterns Contrast optimization for 0.33NA EUV lithography Analysis of wafer heating in 14nm DUV layers GPU accelerated Monte-Carlo simulation of SEM images for metrology Lensless hyperspectral spectromicroscopy with a tabletop extreme-ultraviolet source
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1