为威尔明顿高架桥修复项目建模UHPC连接板

Loai F. El-Gazairly, David A. Nizamoff
{"title":"为威尔明顿高架桥修复项目建模UHPC连接板","authors":"Loai F. El-Gazairly, David A. Nizamoff","doi":"10.21838/UHPC.9710","DOIUrl":null,"url":null,"abstract":"The I-95 Willington Viaduct in Wilmington, Delaware is a sixty-simple span steel multi-beam bridge scheduled to undergo major rehabilitation in 2021. Work will include substructure repair, deck overlay replacement, and transverse bridge deck joint replacements. The owner, the Delaware Department of Transportation (DelDOT),is investigating the concept of removing fifteen (15)failing transverse bridge deck joints via Ultra High Performance Concrete (UHPC) link slabs. Similar applications recently completed by the New York State Department of Transportation (NYSDOT)suggests that the UHPC material is performing adequately with suitable crack spacing control to prevent moisture and chloride penetration within the depth of the link slab. The NYSDOT application was based on using the link slab over elastomeric expansion bearings (i.e., at Exp.-Exp. locations).DelDOT is exploring the use of the NYSDOT approach to extend the application of UHPC link slabs at superstructure locations with different support conditions, i.e., Fix-Fix, Exp.-Exp. and/orFix-Exp.Analytical3-D non-linear computer models of the superstructure were developed to determine the structural response of the UHPC link slab with different support conditions. Results of the computer models have shown that the UHPC link slabs can be considered for use beyond just the Exp.-Exp. conditions and may extend the use of this detail to more structures. The UHPC link slab proposed by DelDOT has the potential to accelerate the rehabilitation process, reduce future maintenance costs,and increase bridge deck durability. In addition to the benefits of lower future maintenance due to the removal of the transverse bridge joints, UHPC link slabs can also be considered an Accelerated Bridge Construction (ABC) technique due to the time and cost savings compared to traditional full joint replacement.","PeriodicalId":170570,"journal":{"name":"Second International Interactive Symposium on UHPC","volume":"51 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-06-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Modeling UHPC Link Slabs for the Wilmington Viaduct Bridge Rehabilitation Project\",\"authors\":\"Loai F. El-Gazairly, David A. Nizamoff\",\"doi\":\"10.21838/UHPC.9710\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The I-95 Willington Viaduct in Wilmington, Delaware is a sixty-simple span steel multi-beam bridge scheduled to undergo major rehabilitation in 2021. Work will include substructure repair, deck overlay replacement, and transverse bridge deck joint replacements. The owner, the Delaware Department of Transportation (DelDOT),is investigating the concept of removing fifteen (15)failing transverse bridge deck joints via Ultra High Performance Concrete (UHPC) link slabs. Similar applications recently completed by the New York State Department of Transportation (NYSDOT)suggests that the UHPC material is performing adequately with suitable crack spacing control to prevent moisture and chloride penetration within the depth of the link slab. The NYSDOT application was based on using the link slab over elastomeric expansion bearings (i.e., at Exp.-Exp. locations).DelDOT is exploring the use of the NYSDOT approach to extend the application of UHPC link slabs at superstructure locations with different support conditions, i.e., Fix-Fix, Exp.-Exp. and/orFix-Exp.Analytical3-D non-linear computer models of the superstructure were developed to determine the structural response of the UHPC link slab with different support conditions. Results of the computer models have shown that the UHPC link slabs can be considered for use beyond just the Exp.-Exp. conditions and may extend the use of this detail to more structures. The UHPC link slab proposed by DelDOT has the potential to accelerate the rehabilitation process, reduce future maintenance costs,and increase bridge deck durability. In addition to the benefits of lower future maintenance due to the removal of the transverse bridge joints, UHPC link slabs can also be considered an Accelerated Bridge Construction (ABC) technique due to the time and cost savings compared to traditional full joint replacement.\",\"PeriodicalId\":170570,\"journal\":{\"name\":\"Second International Interactive Symposium on UHPC\",\"volume\":\"51 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-06-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Second International Interactive Symposium on UHPC\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.21838/UHPC.9710\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Second International Interactive Symposium on UHPC","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.21838/UHPC.9710","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

位于特拉华州威尔明顿的I-95威灵顿高架桥是一座60单跨钢多梁桥,计划于2021年进行重大修复。工作将包括地下结构修复、甲板覆盖层更换和横向桥面接缝更换。业主特拉华州交通部(DelDOT)正在研究通过超高性能混凝土(UHPC)连接板去除15个失效的横向桥面接缝的概念。纽约州交通部(NYSDOT)最近完成的类似应用表明,UHPC材料在适当的裂缝间距控制下表现良好,可以防止水分和氯化物渗入连接板的深处。NYSDOT的应用是基于在弹性膨胀轴承(即Exp.-Exp)上使用链接板。位置)。DelDOT正在探索使用NYSDOT方法来扩展UHPC连接板在具有不同支撑条件的上层建筑位置的应用,即Fix-Fix, Exp.-Exp。和/ orFix-Exp。建立了上部结构的三维非线性计算机模型,以确定不同支撑条件下UHPC连接板的结构响应。计算机模型的结果表明,UHPC连接板可以考虑使用在Exp.-Exp之外。条件,并可将此细节的使用扩展到更多的结构。DelDOT提出的UHPC连接板有可能加速修复过程,降低未来的维护成本,并提高桥面耐久性。除了由于去除横向桥梁接缝而降低未来维护的好处之外,与传统的全关节更换相比,UHPC连接板还可以被视为加速桥梁施工(ABC)技术,因为它节省了时间和成本。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Modeling UHPC Link Slabs for the Wilmington Viaduct Bridge Rehabilitation Project
The I-95 Willington Viaduct in Wilmington, Delaware is a sixty-simple span steel multi-beam bridge scheduled to undergo major rehabilitation in 2021. Work will include substructure repair, deck overlay replacement, and transverse bridge deck joint replacements. The owner, the Delaware Department of Transportation (DelDOT),is investigating the concept of removing fifteen (15)failing transverse bridge deck joints via Ultra High Performance Concrete (UHPC) link slabs. Similar applications recently completed by the New York State Department of Transportation (NYSDOT)suggests that the UHPC material is performing adequately with suitable crack spacing control to prevent moisture and chloride penetration within the depth of the link slab. The NYSDOT application was based on using the link slab over elastomeric expansion bearings (i.e., at Exp.-Exp. locations).DelDOT is exploring the use of the NYSDOT approach to extend the application of UHPC link slabs at superstructure locations with different support conditions, i.e., Fix-Fix, Exp.-Exp. and/orFix-Exp.Analytical3-D non-linear computer models of the superstructure were developed to determine the structural response of the UHPC link slab with different support conditions. Results of the computer models have shown that the UHPC link slabs can be considered for use beyond just the Exp.-Exp. conditions and may extend the use of this detail to more structures. The UHPC link slab proposed by DelDOT has the potential to accelerate the rehabilitation process, reduce future maintenance costs,and increase bridge deck durability. In addition to the benefits of lower future maintenance due to the removal of the transverse bridge joints, UHPC link slabs can also be considered an Accelerated Bridge Construction (ABC) technique due to the time and cost savings compared to traditional full joint replacement.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
New Connection Details to Connect Precast Cap Beams to Precast Columns Using Ultra High Performance Concrete (UHPC) For Seismic and Non-Seismic Regions Acceptance Criteria for Composite UHPC Panel Systems to Show Compliance with the Building Codes in the USA UHPC Facades — The New Use For The New Material The Next Generation of UHPC Caltrans Implementation of UHPC Connections for ABC Projects
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1