基于模糊遗传算法的实时入侵检测

P. Jongsuebsuk, N. Wattanapongsakorn, C. Charnsripinyo
{"title":"基于模糊遗传算法的实时入侵检测","authors":"P. Jongsuebsuk, N. Wattanapongsakorn, C. Charnsripinyo","doi":"10.1109/ECTICON.2013.6559603","DOIUrl":null,"url":null,"abstract":"In this work, we consider network intrusion detection using fuzzy genetic algorithm to classify network attack data. Fuzzy rule is a machine learning algorithm that can classify network attack data, while a genetic algorithm is an optimization algorithm that can help finding appropriate fuzzy rule and give the best/optimal solution. In this paper, we consider both wellknown KDD99 dataset and our own network dataset. The KDD99 dataset is a benchmark dataset that is used in various researches while our network dataset is an online network data captured in actual network environment. We evaluate our IDS in terms of detection speed, detection rate and false alarm rate. From the experiment, we can detect network attack in real-time (or within 2-3 seconds) after the data arrives at the detection system. The detection rate of our algorithm is approximately over 97.5%.","PeriodicalId":273802,"journal":{"name":"2013 10th International Conference on Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2013-05-15","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"37","resultStr":"{\"title\":\"Real-time intrusion detection with fuzzy genetic algorithm\",\"authors\":\"P. Jongsuebsuk, N. Wattanapongsakorn, C. Charnsripinyo\",\"doi\":\"10.1109/ECTICON.2013.6559603\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this work, we consider network intrusion detection using fuzzy genetic algorithm to classify network attack data. Fuzzy rule is a machine learning algorithm that can classify network attack data, while a genetic algorithm is an optimization algorithm that can help finding appropriate fuzzy rule and give the best/optimal solution. In this paper, we consider both wellknown KDD99 dataset and our own network dataset. The KDD99 dataset is a benchmark dataset that is used in various researches while our network dataset is an online network data captured in actual network environment. We evaluate our IDS in terms of detection speed, detection rate and false alarm rate. From the experiment, we can detect network attack in real-time (or within 2-3 seconds) after the data arrives at the detection system. The detection rate of our algorithm is approximately over 97.5%.\",\"PeriodicalId\":273802,\"journal\":{\"name\":\"2013 10th International Conference on Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology\",\"volume\":\"11 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2013-05-15\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"37\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2013 10th International Conference on Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ECTICON.2013.6559603\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2013 10th International Conference on Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ECTICON.2013.6559603","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 37

摘要

在这项工作中,我们考虑使用模糊遗传算法对网络攻击数据进行分类。模糊规则是一种机器学习算法,可以对网络攻击数据进行分类,而遗传算法是一种优化算法,可以帮助找到合适的模糊规则并给出最佳/最优解。在本文中,我们同时考虑了知名的KDD99数据集和我们自己的网络数据集。KDD99数据集是用于各种研究的基准数据集,而我们的网络数据集是在实际网络环境中捕获的在线网络数据。我们根据检测速度、检测率和误报率来评估我们的IDS。从实验来看,我们可以在数据到达检测系统后实时(或在2-3秒内)检测到网络攻击。我们的算法的检测率大约在97.5%以上。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Real-time intrusion detection with fuzzy genetic algorithm
In this work, we consider network intrusion detection using fuzzy genetic algorithm to classify network attack data. Fuzzy rule is a machine learning algorithm that can classify network attack data, while a genetic algorithm is an optimization algorithm that can help finding appropriate fuzzy rule and give the best/optimal solution. In this paper, we consider both wellknown KDD99 dataset and our own network dataset. The KDD99 dataset is a benchmark dataset that is used in various researches while our network dataset is an online network data captured in actual network environment. We evaluate our IDS in terms of detection speed, detection rate and false alarm rate. From the experiment, we can detect network attack in real-time (or within 2-3 seconds) after the data arrives at the detection system. The detection rate of our algorithm is approximately over 97.5%.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
CPW-fed dual wideband using stub split-ring rectangular slot antenna A comparative study on different techniques for Thai part-of-speech tagging Bismuth doped ZnO films as anti-reflection coatings for solar cells Multi-channel Collection Tree Protocol for Wireless Sensor Networks Multi-robot coordination using switching of methods for deriving equilibrium in game theory
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1