颈动脉和升主动脉脉波速度和传递

Sara M. Smith, Justin Marin, Amari Adams, Keith West, Z. Hao
{"title":"颈动脉和升主动脉脉波速度和传递","authors":"Sara M. Smith, Justin Marin, Amari Adams, Keith West, Z. Hao","doi":"10.1115/imece2021-69412","DOIUrl":null,"url":null,"abstract":"\n With consideration of a full set of mechanical properties: elasticity, viscosity, and axial and circumferential initial tensions, and radial and axial motion of the arterial wall, this paper presents a theoretical study of pulse wave propagation in arteries and evaluates pulse wave velocity and transmission at the carotid artery (CA) and the ascending aorta (AA). The arterial wall is treated as an initially-tensioned, isotropic, thin-walled membrane, and the flowing blood in the artery is treated as an incompressible Newtonian fluid. Pulse wave propagation in arteries is formulated as a combination of the governing equations of radial and axial motion of the arterial wall, the governing equations of flowing blood in the artery, and the interface conditions that relate the arterial wall variables to the flowing blood variables. We conduct a free wave propagation analysis of the problem and derive a frequency equation. The solution to the frequency equation indicates two waves: Young wave and Lamb wave, propagating in the arterial tree. With the related values at the CA and the AA, we evaluate the influence of arterial wall properties on their wave velocity and transmission, and find the opposite effects of axial and circumferential initial tensions on transmission of both waves. Physiological implications of such influence are discussed.","PeriodicalId":314012,"journal":{"name":"Volume 5: Biomedical and Biotechnology","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2021-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Pulse Wave Velocity and Transmission at the Carotid Artery and the Ascending Aorta\",\"authors\":\"Sara M. Smith, Justin Marin, Amari Adams, Keith West, Z. Hao\",\"doi\":\"10.1115/imece2021-69412\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"\\n With consideration of a full set of mechanical properties: elasticity, viscosity, and axial and circumferential initial tensions, and radial and axial motion of the arterial wall, this paper presents a theoretical study of pulse wave propagation in arteries and evaluates pulse wave velocity and transmission at the carotid artery (CA) and the ascending aorta (AA). The arterial wall is treated as an initially-tensioned, isotropic, thin-walled membrane, and the flowing blood in the artery is treated as an incompressible Newtonian fluid. Pulse wave propagation in arteries is formulated as a combination of the governing equations of radial and axial motion of the arterial wall, the governing equations of flowing blood in the artery, and the interface conditions that relate the arterial wall variables to the flowing blood variables. We conduct a free wave propagation analysis of the problem and derive a frequency equation. The solution to the frequency equation indicates two waves: Young wave and Lamb wave, propagating in the arterial tree. With the related values at the CA and the AA, we evaluate the influence of arterial wall properties on their wave velocity and transmission, and find the opposite effects of axial and circumferential initial tensions on transmission of both waves. Physiological implications of such influence are discussed.\",\"PeriodicalId\":314012,\"journal\":{\"name\":\"Volume 5: Biomedical and Biotechnology\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Volume 5: Biomedical and Biotechnology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1115/imece2021-69412\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Volume 5: Biomedical and Biotechnology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1115/imece2021-69412","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

考虑到动脉壁的弹性、黏性、轴向和周向初始张力、径向和轴向运动等一整套力学性能,本文对动脉内脉搏波的传播进行了理论研究,并对颈动脉(CA)和升主动脉(AA)的脉搏波速度和传播进行了评价。动脉壁被视为一种初始张力的、各向同性的薄壁膜,动脉中流动的血液被视为不可压缩的牛顿流体。脉搏波在动脉中的传播是由动脉壁径向和轴向运动的控制方程、动脉内流动血液的控制方程以及动脉壁变量与流动血液变量之间的界面条件结合而成的。我们对该问题进行了自由波传播分析,并推导出频率方程。频率方程的解表明有两种波:杨波和兰姆波,在动脉树中传播。利用CA和AA的相关值,我们评估了动脉壁性质对它们的波速和传播的影响,并发现轴向和周向初始张力对两种波的传播的相反影响。讨论了这种影响的生理意义。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Pulse Wave Velocity and Transmission at the Carotid Artery and the Ascending Aorta
With consideration of a full set of mechanical properties: elasticity, viscosity, and axial and circumferential initial tensions, and radial and axial motion of the arterial wall, this paper presents a theoretical study of pulse wave propagation in arteries and evaluates pulse wave velocity and transmission at the carotid artery (CA) and the ascending aorta (AA). The arterial wall is treated as an initially-tensioned, isotropic, thin-walled membrane, and the flowing blood in the artery is treated as an incompressible Newtonian fluid. Pulse wave propagation in arteries is formulated as a combination of the governing equations of radial and axial motion of the arterial wall, the governing equations of flowing blood in the artery, and the interface conditions that relate the arterial wall variables to the flowing blood variables. We conduct a free wave propagation analysis of the problem and derive a frequency equation. The solution to the frequency equation indicates two waves: Young wave and Lamb wave, propagating in the arterial tree. With the related values at the CA and the AA, we evaluate the influence of arterial wall properties on their wave velocity and transmission, and find the opposite effects of axial and circumferential initial tensions on transmission of both waves. Physiological implications of such influence are discussed.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Theoretical Evaluation of Heat Transfer in Liver Tumor Microwave Ablation Using a 10-Slot Antenna at High Frequencies Improving the Performance of Ambulatory Gait Training System for Rehabilitation by Mechatronics and Design Simulation Design of a Carbon Fiber Ankle Foot Orthotic With Optimal Joint Stiffness Effect of Shaking at or Near Resonance of a Simple Head Model on Skull/Brain Connectors Do Long Aorta Branches Impact on the Rheological Properties?
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1