在社交网络中识别垃圾邮件发送者的无监督方法

M. Bouguessa
{"title":"在社交网络中识别垃圾邮件发送者的无监督方法","authors":"M. Bouguessa","doi":"10.1109/ICTAI.2011.130","DOIUrl":null,"url":null,"abstract":"This paper proposes an unsupervised method for automatic identification of spammers in a social network. In our approach, we first investigate the link structure of the network in order to derive a legitimacy score for each node. Then we model these scores as a mixture of beta distributions. The number of components in the mixture is determined by the integrated classification likelihood Bayesian information criterion, while the parameters of each component are estimated using the expectation-maximization algorithm. This method allows us to automatically discriminate between spam senders and legitimate users. Experimental results show the suitability of the proposed approach and compare its performance to that of a previous fully-supervised method. We also illustrate our approach through a test application to Yahoo! Answers, a large question-answering web service that is particularly rich in the amount and types of content and social interactions represented.","PeriodicalId":332661,"journal":{"name":"2011 IEEE 23rd International Conference on Tools with Artificial Intelligence","volume":"107 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"23","resultStr":"{\"title\":\"An Unsupervised Approach for Identifying Spammers in Social Networks\",\"authors\":\"M. Bouguessa\",\"doi\":\"10.1109/ICTAI.2011.130\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper proposes an unsupervised method for automatic identification of spammers in a social network. In our approach, we first investigate the link structure of the network in order to derive a legitimacy score for each node. Then we model these scores as a mixture of beta distributions. The number of components in the mixture is determined by the integrated classification likelihood Bayesian information criterion, while the parameters of each component are estimated using the expectation-maximization algorithm. This method allows us to automatically discriminate between spam senders and legitimate users. Experimental results show the suitability of the proposed approach and compare its performance to that of a previous fully-supervised method. We also illustrate our approach through a test application to Yahoo! Answers, a large question-answering web service that is particularly rich in the amount and types of content and social interactions represented.\",\"PeriodicalId\":332661,\"journal\":{\"name\":\"2011 IEEE 23rd International Conference on Tools with Artificial Intelligence\",\"volume\":\"107 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-11-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"23\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 IEEE 23rd International Conference on Tools with Artificial Intelligence\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICTAI.2011.130\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 IEEE 23rd International Conference on Tools with Artificial Intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICTAI.2011.130","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 23

摘要

本文提出了一种自动识别社交网络中垃圾邮件发送者的无监督方法。在我们的方法中,我们首先研究网络的链接结构,以便得出每个节点的合法性得分。然后我们将这些分数建模为beta分布的混合。混合成分的数量采用综合分类似然贝叶斯信息准则确定,各成分的参数采用期望最大化算法估计。这种方法允许我们自动区分垃圾邮件发送者和合法用户。实验结果表明了该方法的适用性,并将其性能与先前的全监督方法进行了比较。我们还通过Yahoo!Answers是一个大型的问答web服务,在内容的数量和类型以及所表示的社会交互方面特别丰富。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
An Unsupervised Approach for Identifying Spammers in Social Networks
This paper proposes an unsupervised method for automatic identification of spammers in a social network. In our approach, we first investigate the link structure of the network in order to derive a legitimacy score for each node. Then we model these scores as a mixture of beta distributions. The number of components in the mixture is determined by the integrated classification likelihood Bayesian information criterion, while the parameters of each component are estimated using the expectation-maximization algorithm. This method allows us to automatically discriminate between spam senders and legitimate users. Experimental results show the suitability of the proposed approach and compare its performance to that of a previous fully-supervised method. We also illustrate our approach through a test application to Yahoo! Answers, a large question-answering web service that is particularly rich in the amount and types of content and social interactions represented.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Independence-Based MAP for Markov Networks Structure Discovery Flexible, Efficient and Interactive Retrieval for Supporting In-silico Studies of Endobacteria Recurrent Neural Networks for Moisture Content Prediction in Seed Corn Dryer Buildings Top Subspace Synthesizing for Promotional Subspace Mining RELIEF-C: Efficient Feature Selection for Clustering over Noisy Data
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1