{"title":"电动汽车再生制动试验循环仿真","authors":"Roberta Di Fonso, Carlo Cecati","doi":"10.23919/AEITAUTOMOTIVE50086.2020.9307414","DOIUrl":null,"url":null,"abstract":"In the near future electric cars will be ubiquitous thanks to their wider functionalities and to their much lower tailpipe emissions to the environment. However, at present, there are still problems concerning the storage of energy for long range operation. It is therefore important to employ strategies to preserve the State of Charge (SoC) of batteries as much as possible. The first important strategy is related to the driving style in order to minimize frequent acceleration-braking sequences. Once this condition has been met, the next strategy could be the partial recharge of battery during braking, recovering the kinetic energy of the car mass. This paper presents the simulation of a simple mechanical quarter-car model whose wheel is driven by a Permanent Magnet Synchronous Motor (PMSM) motor. The focus is on the electric control of the motor and on the energy recovery. The PMSM could accelerate and brake the car in all conditions, but this solution depletes the battery also in braking. There is a better strategy that use a combination of regenerative braking (battery recharge) and dissipative mechanical braking. In order to produce meaningful results, the simulations follow the class 3 time-speed data points of the Worldwide Harmonized Light vehicles Test Cycles (WLTC) developed for Pure Electric Vehicles (PEV).","PeriodicalId":104806,"journal":{"name":"2020 AEIT International Conference of Electrical and Electronic Technologies for Automotive (AEIT AUTOMOTIVE)","volume":"51 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2020-11-18","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Test cycle simulation of an electric car with regenerative braking\",\"authors\":\"Roberta Di Fonso, Carlo Cecati\",\"doi\":\"10.23919/AEITAUTOMOTIVE50086.2020.9307414\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In the near future electric cars will be ubiquitous thanks to their wider functionalities and to their much lower tailpipe emissions to the environment. However, at present, there are still problems concerning the storage of energy for long range operation. It is therefore important to employ strategies to preserve the State of Charge (SoC) of batteries as much as possible. The first important strategy is related to the driving style in order to minimize frequent acceleration-braking sequences. Once this condition has been met, the next strategy could be the partial recharge of battery during braking, recovering the kinetic energy of the car mass. This paper presents the simulation of a simple mechanical quarter-car model whose wheel is driven by a Permanent Magnet Synchronous Motor (PMSM) motor. The focus is on the electric control of the motor and on the energy recovery. The PMSM could accelerate and brake the car in all conditions, but this solution depletes the battery also in braking. There is a better strategy that use a combination of regenerative braking (battery recharge) and dissipative mechanical braking. In order to produce meaningful results, the simulations follow the class 3 time-speed data points of the Worldwide Harmonized Light vehicles Test Cycles (WLTC) developed for Pure Electric Vehicles (PEV).\",\"PeriodicalId\":104806,\"journal\":{\"name\":\"2020 AEIT International Conference of Electrical and Electronic Technologies for Automotive (AEIT AUTOMOTIVE)\",\"volume\":\"51 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2020-11-18\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2020 AEIT International Conference of Electrical and Electronic Technologies for Automotive (AEIT AUTOMOTIVE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.23919/AEITAUTOMOTIVE50086.2020.9307414\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2020 AEIT International Conference of Electrical and Electronic Technologies for Automotive (AEIT AUTOMOTIVE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.23919/AEITAUTOMOTIVE50086.2020.9307414","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

在不久的将来,电动汽车将因其更广泛的功能和更低的尾气排放而无处不在。然而,目前,关于远程运行的能量存储仍然存在一些问题。因此,采用尽可能多的策略来保持电池的充电状态(SoC)是很重要的。第一个重要的策略与驾驶风格有关,以尽量减少频繁的加速-制动序列。一旦满足了这个条件,下一步的策略可能是在制动时对电池进行部分充电,以恢复汽车质量的动能。本文对车轮由永磁同步电机驱动的简单机械四分之一小车模型进行了仿真。重点是电机的电气控制和能量回收。PMSM可以在任何情况下加速和刹车,但这种解决方案也会在刹车时耗尽电池。有一个更好的策略,使用再生制动(电池充电)和耗散机械制动的组合。为了获得有意义的结果,模拟遵循了为纯电动汽车(PEV)开发的全球统一轻型车辆测试周期(WLTC)的第3类时间-速度数据点。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Test cycle simulation of an electric car with regenerative braking
In the near future electric cars will be ubiquitous thanks to their wider functionalities and to their much lower tailpipe emissions to the environment. However, at present, there are still problems concerning the storage of energy for long range operation. It is therefore important to employ strategies to preserve the State of Charge (SoC) of batteries as much as possible. The first important strategy is related to the driving style in order to minimize frequent acceleration-braking sequences. Once this condition has been met, the next strategy could be the partial recharge of battery during braking, recovering the kinetic energy of the car mass. This paper presents the simulation of a simple mechanical quarter-car model whose wheel is driven by a Permanent Magnet Synchronous Motor (PMSM) motor. The focus is on the electric control of the motor and on the energy recovery. The PMSM could accelerate and brake the car in all conditions, but this solution depletes the battery also in braking. There is a better strategy that use a combination of regenerative braking (battery recharge) and dissipative mechanical braking. In order to produce meaningful results, the simulations follow the class 3 time-speed data points of the Worldwide Harmonized Light vehicles Test Cycles (WLTC) developed for Pure Electric Vehicles (PEV).
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Silicon MOSFETs Evaluation in Auxiliary DC-DC Converters for HEV/EV Applications LiDAR - Stereo Camera Fusion for Accurate Depth Estimation Design and Modeling of an Interleaving Boost Converter with Quasi-Saturated Inductors for Electric Vehicles Review on Electric Vehicles Exterior Noise Generation and Evaluation The "first and euRopEAn siC eighT Inches pilOt liNe": a project, called REACTION, that will boost key SiC Technologies upgrading (developments) in Europe, unleashing Applications in the Automotive Power Electronics Sector
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1