Quanshi Zhang, Xuan Song, Xiaowei Shao, Huijing Zhao, R. Shibasaki
{"title":"属性图挖掘与匹配:软属性模式定义与提取的尝试","authors":"Quanshi Zhang, Xuan Song, Xiaowei Shao, Huijing Zhao, R. Shibasaki","doi":"10.1109/CVPR.2014.181","DOIUrl":null,"url":null,"abstract":"Graph matching and graph mining are two typical areas in artificial intelligence. In this paper, we define the soft attributed pattern (SAP) to describe the common subgraph pattern among a set of attributed relational graphs (ARGs), considering both the graphical structure and graph attributes. We propose a direct solution to extract the SAP with the maximal graph size without node enumeration. Given an initial graph template and a number of ARGs, we modify the graph template into the maximal SAP among the ARGs in an unsupervised fashion. The maximal SAP extraction is equivalent to learning a graphical model (i.e. an object model) from large ARGs (i.e. cluttered RGB/RGB-D images) for graph matching, which extends the concept of \"unsupervised learning for graph matching.\" Furthermore, this study can be also regarded as the first known approach to formulating \"maximal graph mining\" in the graph domain of ARGs. Our method exhibits superior performance on RGB and RGB-D images.","PeriodicalId":319578,"journal":{"name":"2014 IEEE Conference on Computer Vision and Pattern Recognition","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-06-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"19","resultStr":"{\"title\":\"Attributed Graph Mining and Matching: An Attempt to Define and Extract Soft Attributed Patterns\",\"authors\":\"Quanshi Zhang, Xuan Song, Xiaowei Shao, Huijing Zhao, R. Shibasaki\",\"doi\":\"10.1109/CVPR.2014.181\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Graph matching and graph mining are two typical areas in artificial intelligence. In this paper, we define the soft attributed pattern (SAP) to describe the common subgraph pattern among a set of attributed relational graphs (ARGs), considering both the graphical structure and graph attributes. We propose a direct solution to extract the SAP with the maximal graph size without node enumeration. Given an initial graph template and a number of ARGs, we modify the graph template into the maximal SAP among the ARGs in an unsupervised fashion. The maximal SAP extraction is equivalent to learning a graphical model (i.e. an object model) from large ARGs (i.e. cluttered RGB/RGB-D images) for graph matching, which extends the concept of \\\"unsupervised learning for graph matching.\\\" Furthermore, this study can be also regarded as the first known approach to formulating \\\"maximal graph mining\\\" in the graph domain of ARGs. Our method exhibits superior performance on RGB and RGB-D images.\",\"PeriodicalId\":319578,\"journal\":{\"name\":\"2014 IEEE Conference on Computer Vision and Pattern Recognition\",\"volume\":\"19 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-06-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"19\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 IEEE Conference on Computer Vision and Pattern Recognition\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CVPR.2014.181\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE Conference on Computer Vision and Pattern Recognition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CVPR.2014.181","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Attributed Graph Mining and Matching: An Attempt to Define and Extract Soft Attributed Patterns
Graph matching and graph mining are two typical areas in artificial intelligence. In this paper, we define the soft attributed pattern (SAP) to describe the common subgraph pattern among a set of attributed relational graphs (ARGs), considering both the graphical structure and graph attributes. We propose a direct solution to extract the SAP with the maximal graph size without node enumeration. Given an initial graph template and a number of ARGs, we modify the graph template into the maximal SAP among the ARGs in an unsupervised fashion. The maximal SAP extraction is equivalent to learning a graphical model (i.e. an object model) from large ARGs (i.e. cluttered RGB/RGB-D images) for graph matching, which extends the concept of "unsupervised learning for graph matching." Furthermore, this study can be also regarded as the first known approach to formulating "maximal graph mining" in the graph domain of ARGs. Our method exhibits superior performance on RGB and RGB-D images.