{"title":"AdaBoost在偏振SAR图像分类中的应用","authors":"Rui Min, Xiaobo Yang, Zhiqin Zhao","doi":"10.1109/RADAR.2009.4976988","DOIUrl":null,"url":null,"abstract":"In this paper, a method of polarimetric SAR image classification based on polarimetric decomposition and AdaBoost algorithm is proposed. The proposed method improves classification accuracy and speed. AdaBoost algorithm, as a robust learner with high accuracy, can fully utilize the polarimetric features to achieve image classification. In simulated tests, the proposed method is observed to produce improved classification accuracy and speed, compared with H /α̅ classification algorithm.","PeriodicalId":346898,"journal":{"name":"2009 IEEE Radar Conference","volume":"150 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-05-04","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"6","resultStr":"{\"title\":\"Application of AdaBoost in polarimetric SAR image classification\",\"authors\":\"Rui Min, Xiaobo Yang, Zhiqin Zhao\",\"doi\":\"10.1109/RADAR.2009.4976988\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, a method of polarimetric SAR image classification based on polarimetric decomposition and AdaBoost algorithm is proposed. The proposed method improves classification accuracy and speed. AdaBoost algorithm, as a robust learner with high accuracy, can fully utilize the polarimetric features to achieve image classification. In simulated tests, the proposed method is observed to produce improved classification accuracy and speed, compared with H /α̅ classification algorithm.\",\"PeriodicalId\":346898,\"journal\":{\"name\":\"2009 IEEE Radar Conference\",\"volume\":\"150 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-05-04\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"6\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 IEEE Radar Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/RADAR.2009.4976988\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 IEEE Radar Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RADAR.2009.4976988","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Application of AdaBoost in polarimetric SAR image classification
In this paper, a method of polarimetric SAR image classification based on polarimetric decomposition and AdaBoost algorithm is proposed. The proposed method improves classification accuracy and speed. AdaBoost algorithm, as a robust learner with high accuracy, can fully utilize the polarimetric features to achieve image classification. In simulated tests, the proposed method is observed to produce improved classification accuracy and speed, compared with H /α̅ classification algorithm.