模糊分类树中金融数据离散属性的模糊化

Keeley A. Crockett, Z. Bandar, J. O'Shea
{"title":"模糊分类树中金融数据离散属性的模糊化","authors":"Keeley A. Crockett, Z. Bandar, J. O'Shea","doi":"10.1109/FUZZY.2009.5277400","DOIUrl":null,"url":null,"abstract":"Fuzzy Decision Trees have been successfully applied to both classification and regression problems by allowing gradual transitions to exist between attribute values. Methodologies for fuzzification in fuzzy trees currently create such gradual transitions for continuous attributes. This is achieved by automatically creating fuzzy regions around tree nodes using an optimization algorithm or by using the knowledge of a human expert to create a series of fuzzy sets which are representative of the attributes domain. A problem occurs when trying to construct a fuzzy tree from real world data which comprises of only discrete or a mixture of discrete and continuous attributes. Discrete attribute values have no proximity to other values in the decision space, as there is no continuum between values. Consequently, within a fuzzy tree they are interpreted as crisp sets and contribute little towards the final outcome. This paper proposes a new approach for the fuzzification of discrete attributes in fuzzy decision trees. The approach ranks discrete values on the basis of their effect on the outcome rate and assigns a possibility of being a specific outcome. Experiments carried out on two real world financial datasets which contain a significant proportion of discrete attributes show improved classification accuracy compared with a crisp interpretation of such attributes within fuzzy trees.","PeriodicalId":117895,"journal":{"name":"2009 IEEE International Conference on Fuzzy Systems","volume":null,"pages":null},"PeriodicalIF":0.0000,"publicationDate":"2009-10-02","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"9","resultStr":"{\"title\":\"Fuzzification of discrete attributes from financial data in fuzzy classification trees\",\"authors\":\"Keeley A. Crockett, Z. Bandar, J. O'Shea\",\"doi\":\"10.1109/FUZZY.2009.5277400\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Fuzzy Decision Trees have been successfully applied to both classification and regression problems by allowing gradual transitions to exist between attribute values. Methodologies for fuzzification in fuzzy trees currently create such gradual transitions for continuous attributes. This is achieved by automatically creating fuzzy regions around tree nodes using an optimization algorithm or by using the knowledge of a human expert to create a series of fuzzy sets which are representative of the attributes domain. A problem occurs when trying to construct a fuzzy tree from real world data which comprises of only discrete or a mixture of discrete and continuous attributes. Discrete attribute values have no proximity to other values in the decision space, as there is no continuum between values. Consequently, within a fuzzy tree they are interpreted as crisp sets and contribute little towards the final outcome. This paper proposes a new approach for the fuzzification of discrete attributes in fuzzy decision trees. The approach ranks discrete values on the basis of their effect on the outcome rate and assigns a possibility of being a specific outcome. Experiments carried out on two real world financial datasets which contain a significant proportion of discrete attributes show improved classification accuracy compared with a crisp interpretation of such attributes within fuzzy trees.\",\"PeriodicalId\":117895,\"journal\":{\"name\":\"2009 IEEE International Conference on Fuzzy Systems\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-10-02\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"9\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 IEEE International Conference on Fuzzy Systems\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/FUZZY.2009.5277400\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 IEEE International Conference on Fuzzy Systems","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/FUZZY.2009.5277400","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 9

摘要

模糊决策树通过允许属性值之间的渐变存在,已经成功地应用于分类和回归问题。目前,模糊树中的模糊化方法为连续属性创造了这种渐进的过渡。这是通过使用优化算法自动创建树节点周围的模糊区域或通过使用人类专家的知识来创建一系列代表属性域的模糊集来实现的。当试图从仅由离散或离散和连续属性混合组成的真实世界数据构建模糊树时,会出现一个问题。离散属性值与决策空间中的其他值没有接近性,因为值之间没有连续体。因此,在模糊树中,它们被解释为清晰的集合,对最终结果贡献不大。提出了一种模糊决策树离散属性模糊化的新方法。该方法根据离散值对结果率的影响对它们进行排序,并分配成为特定结果的可能性。在两个包含大量离散属性的真实世界金融数据集上进行的实验表明,与模糊树中对这些属性的清晰解释相比,分类精度得到了提高。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Fuzzification of discrete attributes from financial data in fuzzy classification trees
Fuzzy Decision Trees have been successfully applied to both classification and regression problems by allowing gradual transitions to exist between attribute values. Methodologies for fuzzification in fuzzy trees currently create such gradual transitions for continuous attributes. This is achieved by automatically creating fuzzy regions around tree nodes using an optimization algorithm or by using the knowledge of a human expert to create a series of fuzzy sets which are representative of the attributes domain. A problem occurs when trying to construct a fuzzy tree from real world data which comprises of only discrete or a mixture of discrete and continuous attributes. Discrete attribute values have no proximity to other values in the decision space, as there is no continuum between values. Consequently, within a fuzzy tree they are interpreted as crisp sets and contribute little towards the final outcome. This paper proposes a new approach for the fuzzification of discrete attributes in fuzzy decision trees. The approach ranks discrete values on the basis of their effect on the outcome rate and assigns a possibility of being a specific outcome. Experiments carried out on two real world financial datasets which contain a significant proportion of discrete attributes show improved classification accuracy compared with a crisp interpretation of such attributes within fuzzy trees.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Design and simulation of a hybrid controller for a multi-input multi-output magnetic suspension system Fuzzy CMAC structures Hybrid SVM-GPs learning for modeling of molecular autoregulatory feedback loop systems with outliers On-line adaptive T-S fuzzy neural control for active suspension systems Analyzing KANSEI from facial expressions with fuzzy quantification theory II
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1