具有分配限制的装配线系统工作负载平衡的有效方法

Imad Belassiria, M. Mazouzi, Said El Fezazi, Z. El Maskaoui
{"title":"具有分配限制的装配线系统工作负载平衡的有效方法","authors":"Imad Belassiria, M. Mazouzi, Said El Fezazi, Z. El Maskaoui","doi":"10.1109/LOGISTIQUA.2017.7962865","DOIUrl":null,"url":null,"abstract":"In this paper, we propose a hybrid genetic algorithm to solve assembly line balancing problem type E. There are two objectives to be achieved: Maximizing line efficiency balancing the workstation simultaneously. The model provide more realistic situation of assembly line balancing problem with station restriction and zoning constraints. The genetic algorithm may lack the capability of exploring the solution space effectively, so we aim to provide its exploring capability by sequentially hybridizing the well known assignment rules heuristics with genetic algorithm.","PeriodicalId":310750,"journal":{"name":"2017 International Colloquium on Logistics and Supply Chain Management (LOGISTIQUA)","volume":"520 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-04-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"An efficient approach for workload balancing of assembly line systems with assignment restrictions\",\"authors\":\"Imad Belassiria, M. Mazouzi, Said El Fezazi, Z. El Maskaoui\",\"doi\":\"10.1109/LOGISTIQUA.2017.7962865\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this paper, we propose a hybrid genetic algorithm to solve assembly line balancing problem type E. There are two objectives to be achieved: Maximizing line efficiency balancing the workstation simultaneously. The model provide more realistic situation of assembly line balancing problem with station restriction and zoning constraints. The genetic algorithm may lack the capability of exploring the solution space effectively, so we aim to provide its exploring capability by sequentially hybridizing the well known assignment rules heuristics with genetic algorithm.\",\"PeriodicalId\":310750,\"journal\":{\"name\":\"2017 International Colloquium on Logistics and Supply Chain Management (LOGISTIQUA)\",\"volume\":\"520 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-04-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 International Colloquium on Logistics and Supply Chain Management (LOGISTIQUA)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/LOGISTIQUA.2017.7962865\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 International Colloquium on Logistics and Supply Chain Management (LOGISTIQUA)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/LOGISTIQUA.2017.7962865","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

本文提出了一种混合遗传算法来解决e型装配线平衡问题。该算法有两个目标:最大化生产线效率,同时平衡工作站。该模型提供了具有工位约束和分区约束的装配线平衡问题的更为现实的情形。遗传算法缺乏对解空间的有效探索能力,因此我们将已知的分配规则启发式算法与遗传算法序贯混合,以提供遗传算法的探索能力。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
An efficient approach for workload balancing of assembly line systems with assignment restrictions
In this paper, we propose a hybrid genetic algorithm to solve assembly line balancing problem type E. There are two objectives to be achieved: Maximizing line efficiency balancing the workstation simultaneously. The model provide more realistic situation of assembly line balancing problem with station restriction and zoning constraints. The genetic algorithm may lack the capability of exploring the solution space effectively, so we aim to provide its exploring capability by sequentially hybridizing the well known assignment rules heuristics with genetic algorithm.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Towards a simulation model of an outpatient chemotherapy unit Supply chain management and organizational change: Integrating an activity after its subcontracting in a Moroccan construction company Workload balancing in nurse scheduling problem models and discussion Spatial analysis of bus accidents in France Toward an agent-based framework for human resource management
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1