共混对低密度聚乙烯、聚丙烯、聚氯乙烯力学性能的影响

Suleiman Shaibu Asuku, Y. Abubakar, Ali Abdulraheem, A. I. Galadima, Abdel Malik Abdel Gaffar Amoka
{"title":"共混对低密度聚乙烯、聚丙烯、聚氯乙烯力学性能的影响","authors":"Suleiman Shaibu Asuku, Y. Abubakar, Ali Abdulraheem, A. I. Galadima, Abdel Malik Abdel Gaffar Amoka","doi":"10.56919/usci.2223.006","DOIUrl":null,"url":null,"abstract":"Three thermoplastic polymers, low-density polyethylene (LDPE), polypropylene(PP), and polyvinyl chloride (PVC),were synthesized from their raw pellets.Three blends of 1:1 wt.% of low-density polyethylene/polypropylene, low-density polyethylene/polyvinylchloride, polypropylene/polyvinylchloride, and one blend of 1:1:1 wt.% of low-density polyethylene/polypropylene/polyvinylchloride were produced via compression mould method using Two-roll Mill machine and Compression Mould machine. Using the Tensile Strength Tester machine, the pristine polymer and the blends were cut into dumbbell shapes for mechanical testing. The resultsobtained are 9.8MPa and 67.5% maximum stress and strain, respectively, for LDPE, 29MPa, and 12.4% maximum stress and strain, respectively, for neat PP. 25.8MPa and 35% maximum stress and strain respectively for pristine PVC, 19.2MPa and 44% maximum stress and strain respectively for LDPE/PVC blend, 19MPa and 29% maximum stress and strain respectively for LDPE/PP blend, 27.5MPa and10.75% maximum stress and strain respectively for PP/PVC, 21MPa and 10.4% maximum stress and stain respectively for LDPE/PP/PVC blend. The force at peak and the respective peak elongation are; 85.612N and 0.008387m for pristineLDPE, 344.810N and 0.004810m for pristinePP, 264.976N and 0.005496m forpristine PVC, 188.288N and 0.005980m for LDPE/PVC blend, 174.755N and 0.005109m for LDPE/PP blend, 250.196N and0.004287m for PP/PVC blend, 275.175N and 4.009mm for LDPE/PP/PVC blend. The maximum energies expended to have maximum extension are 0.71802784J (LDPE), 2.04578339J (PP), 1.70308635J (PVC), 1.12596224J (LDPE/PVC),0.8928233J (LDPE/PP), 1.50129025J (PP/PVC) and 1.10317658J (LDPE/PP/PVC). These results show improvement in the mechanical properties of the blends when compared with those of the constituent polymers. It also indicatesthat polymeric properties modification via an immiscible polymer blend is possible and easy to achieve.","PeriodicalId":235595,"journal":{"name":"UMYU Scientifica","volume":"137 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2023-06-30","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Influence of Blending on Mechanical Behavior of Low-Density Polyethylene, Polypropylene, Polyvinylchloride\",\"authors\":\"Suleiman Shaibu Asuku, Y. Abubakar, Ali Abdulraheem, A. I. Galadima, Abdel Malik Abdel Gaffar Amoka\",\"doi\":\"10.56919/usci.2223.006\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Three thermoplastic polymers, low-density polyethylene (LDPE), polypropylene(PP), and polyvinyl chloride (PVC),were synthesized from their raw pellets.Three blends of 1:1 wt.% of low-density polyethylene/polypropylene, low-density polyethylene/polyvinylchloride, polypropylene/polyvinylchloride, and one blend of 1:1:1 wt.% of low-density polyethylene/polypropylene/polyvinylchloride were produced via compression mould method using Two-roll Mill machine and Compression Mould machine. Using the Tensile Strength Tester machine, the pristine polymer and the blends were cut into dumbbell shapes for mechanical testing. The resultsobtained are 9.8MPa and 67.5% maximum stress and strain, respectively, for LDPE, 29MPa, and 12.4% maximum stress and strain, respectively, for neat PP. 25.8MPa and 35% maximum stress and strain respectively for pristine PVC, 19.2MPa and 44% maximum stress and strain respectively for LDPE/PVC blend, 19MPa and 29% maximum stress and strain respectively for LDPE/PP blend, 27.5MPa and10.75% maximum stress and strain respectively for PP/PVC, 21MPa and 10.4% maximum stress and stain respectively for LDPE/PP/PVC blend. The force at peak and the respective peak elongation are; 85.612N and 0.008387m for pristineLDPE, 344.810N and 0.004810m for pristinePP, 264.976N and 0.005496m forpristine PVC, 188.288N and 0.005980m for LDPE/PVC blend, 174.755N and 0.005109m for LDPE/PP blend, 250.196N and0.004287m for PP/PVC blend, 275.175N and 4.009mm for LDPE/PP/PVC blend. The maximum energies expended to have maximum extension are 0.71802784J (LDPE), 2.04578339J (PP), 1.70308635J (PVC), 1.12596224J (LDPE/PVC),0.8928233J (LDPE/PP), 1.50129025J (PP/PVC) and 1.10317658J (LDPE/PP/PVC). These results show improvement in the mechanical properties of the blends when compared with those of the constituent polymers. It also indicatesthat polymeric properties modification via an immiscible polymer blend is possible and easy to achieve.\",\"PeriodicalId\":235595,\"journal\":{\"name\":\"UMYU Scientifica\",\"volume\":\"137 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2023-06-30\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"UMYU Scientifica\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.56919/usci.2223.006\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"UMYU Scientifica","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.56919/usci.2223.006","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

三种热塑性聚合物,低密度聚乙烯(LDPE),聚丙烯(PP)和聚氯乙烯(PVC),合成了他们的原料球团。利用双辊磨机和压模机,通过压模法生产出了低密度聚乙烯/聚丙烯、低密度聚乙烯/聚氯乙烯、聚丙烯/聚氯乙烯各配比1:1:1的共混物和低密度聚乙烯/聚丙烯/聚氯乙烯各配比1:1:1的共混物。使用拉伸强度试验机,原始聚合物和共混物被切割成哑铃形状进行力学测试。结果表明:LDPE的最大应力应变分别为9.8MPa和67.5%,纯PP的最大应力应变分别为29MPa和12.4%,原始PVC的最大应力应变分别为25.8MPa和35%,LDPE/PVC共混物的最大应力应变分别为19.2MPa和44%,LDPE/PP共混物的最大应力应变分别为19MPa和29%,PP/PVC的最大应力应变分别为27.5MPa和10.75%。LDPE/PP/PVC共混物的最大应力和染色分别为21MPa和10.4%。峰值受力和各自的峰值伸长率分别为;原始eldpe为85.612N和0.008387米,原始epp为344.810N和0.004810米,原始PVC为264.976N和0.005496米,LDPE/PVC共混物为188.288N和0.005980米,LDPE/PP共混物为174.755N和0.005109米,PP/PVC共混物为250.196N和0.004287米,LDPE/PP/PVC共混物为275.175N和4.009毫米。产生最大延伸的最大能量分别为0.71802784J (LDPE)、2.04578339J (PP)、1.70308635J (PVC)、1.12596224J (LDPE/PVC)、0.8928233J (LDPE/PP)、1.50129025J (PP/PVC)和1.10317658J (LDPE/PP/PVC)。这些结果表明,与组成聚合物相比,共混物的机械性能有所改善。它还表明,通过非混相聚合物共混改性聚合物性能是可能的,而且容易实现。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Influence of Blending on Mechanical Behavior of Low-Density Polyethylene, Polypropylene, Polyvinylchloride
Three thermoplastic polymers, low-density polyethylene (LDPE), polypropylene(PP), and polyvinyl chloride (PVC),were synthesized from their raw pellets.Three blends of 1:1 wt.% of low-density polyethylene/polypropylene, low-density polyethylene/polyvinylchloride, polypropylene/polyvinylchloride, and one blend of 1:1:1 wt.% of low-density polyethylene/polypropylene/polyvinylchloride were produced via compression mould method using Two-roll Mill machine and Compression Mould machine. Using the Tensile Strength Tester machine, the pristine polymer and the blends were cut into dumbbell shapes for mechanical testing. The resultsobtained are 9.8MPa and 67.5% maximum stress and strain, respectively, for LDPE, 29MPa, and 12.4% maximum stress and strain, respectively, for neat PP. 25.8MPa and 35% maximum stress and strain respectively for pristine PVC, 19.2MPa and 44% maximum stress and strain respectively for LDPE/PVC blend, 19MPa and 29% maximum stress and strain respectively for LDPE/PP blend, 27.5MPa and10.75% maximum stress and strain respectively for PP/PVC, 21MPa and 10.4% maximum stress and stain respectively for LDPE/PP/PVC blend. The force at peak and the respective peak elongation are; 85.612N and 0.008387m for pristineLDPE, 344.810N and 0.004810m for pristinePP, 264.976N and 0.005496m forpristine PVC, 188.288N and 0.005980m for LDPE/PVC blend, 174.755N and 0.005109m for LDPE/PP blend, 250.196N and0.004287m for PP/PVC blend, 275.175N and 4.009mm for LDPE/PP/PVC blend. The maximum energies expended to have maximum extension are 0.71802784J (LDPE), 2.04578339J (PP), 1.70308635J (PVC), 1.12596224J (LDPE/PVC),0.8928233J (LDPE/PP), 1.50129025J (PP/PVC) and 1.10317658J (LDPE/PP/PVC). These results show improvement in the mechanical properties of the blends when compared with those of the constituent polymers. It also indicatesthat polymeric properties modification via an immiscible polymer blend is possible and easy to achieve.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Identification and Screening of Biosurfactant Producing Bacteria from Mechanic Workshops Soil in Gusau Metropolis, Nigeria Bioelectricity Generation from Microbial Fuel Cell utilizing Sewage Wastewater and Cow Urine from Dutse Metropolis Jigawa State Distribution and Bioresource Potential of Duckweed (Lemna minor L.) in Maiduguri, Nigeria Rate of Emergence and Mortality of Sceliphron caementarium (Hymenoptera: sphecidae) as a Result of Parasitoids to Endogenous Factors in Ahmadu Bello University Zaria, Kaduna, Nigeria. Challenges and Prospects of Marketing Nigerian-Made Computer Software: A Study on Attitudes and Marketability.
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1