基于Robo-gym的移动机械手强化学习环境的实现

Myunghyun Kim, Sungwoo Yang, Soo-Hyek Kang, Wonha Kim, D. Kim
{"title":"基于Robo-gym的移动机械手强化学习环境的实现","authors":"Myunghyun Kim, Sungwoo Yang, Soo-Hyek Kang, Wonha Kim, D. Kim","doi":"10.1109/IRC55401.2022.00056","DOIUrl":null,"url":null,"abstract":"Many studies utilize reinforcement learning in simulation environments to control robots. Since simulation environments do not provide reinforcement learning environments for all robots, it is important for researchers to choose a simulation environment with the robots they use. This paper adds and expands a new robot-platform to the robot-gym environment, a reinforcement learning framework used in the Gazebo simulation environment. The added robot-platform is Husky-ur3, a mobile manipulator robot, and it can recognize the coordinates of the target point by itself through the camera. It was confirmed that the mobile manipulator learning environment was well established through experiments of recognizing and following target.","PeriodicalId":282759,"journal":{"name":"2022 Sixth IEEE International Conference on Robotic Computing (IRC)","volume":"3 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Implemention of Reinforcement Learning Environment for Mobile Manipulator Using Robo-gym\",\"authors\":\"Myunghyun Kim, Sungwoo Yang, Soo-Hyek Kang, Wonha Kim, D. Kim\",\"doi\":\"10.1109/IRC55401.2022.00056\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Many studies utilize reinforcement learning in simulation environments to control robots. Since simulation environments do not provide reinforcement learning environments for all robots, it is important for researchers to choose a simulation environment with the robots they use. This paper adds and expands a new robot-platform to the robot-gym environment, a reinforcement learning framework used in the Gazebo simulation environment. The added robot-platform is Husky-ur3, a mobile manipulator robot, and it can recognize the coordinates of the target point by itself through the camera. It was confirmed that the mobile manipulator learning environment was well established through experiments of recognizing and following target.\",\"PeriodicalId\":282759,\"journal\":{\"name\":\"2022 Sixth IEEE International Conference on Robotic Computing (IRC)\",\"volume\":\"3 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2022 Sixth IEEE International Conference on Robotic Computing (IRC)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IRC55401.2022.00056\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2022 Sixth IEEE International Conference on Robotic Computing (IRC)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IRC55401.2022.00056","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 0

摘要

许多研究利用仿真环境中的强化学习来控制机器人。由于仿真环境不能为所有机器人提供强化学习环境,因此研究人员选择与他们使用的机器人相匹配的仿真环境是很重要的。本文在机器人健身环境中增加并扩展了一个新的机器人平台,一个用于Gazebo仿真环境的强化学习框架。增加的机器人平台为移动机械手Husky-ur3,它可以通过摄像头自行识别目标点的坐标。通过目标识别与跟踪实验,验证了该移动机械臂学习环境的建立。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Implemention of Reinforcement Learning Environment for Mobile Manipulator Using Robo-gym
Many studies utilize reinforcement learning in simulation environments to control robots. Since simulation environments do not provide reinforcement learning environments for all robots, it is important for researchers to choose a simulation environment with the robots they use. This paper adds and expands a new robot-platform to the robot-gym environment, a reinforcement learning framework used in the Gazebo simulation environment. The added robot-platform is Husky-ur3, a mobile manipulator robot, and it can recognize the coordinates of the target point by itself through the camera. It was confirmed that the mobile manipulator learning environment was well established through experiments of recognizing and following target.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
An Improved Approach to 6D Object Pose Tracking in Fast Motion Scenarios Mechanical Exploration of the Design of Tactile Fingertips via Finite Element Analysis Generating Robot-Dependent Cost Maps for Off-Road Environments Using Locomotion Experiments and Earth Observation Data* Tracking Visual Landmarks of Opportunity as Rally Points for Unmanned Ground Vehicles Experimental Assessment of Feature-based Lidar Odometry and Mapping
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1