使用学习向量量化的分散估计

Mihajlo Grbovic, S. Vucetic
{"title":"使用学习向量量化的分散估计","authors":"Mihajlo Grbovic, S. Vucetic","doi":"10.1109/DCC.2009.77","DOIUrl":null,"url":null,"abstract":"Decentralized estimation is an essential problem for a number of data fusion applications. In this paper we propose a variation of the Learning Vector Quantization (LVQ) algorithm, the Distortion Sensitive LVQ (DSLVQ), to be used for quantizer design in decentralized estimation. Experimental results suggest that DSLVQ results in high-quality quantizers and that it allows easy adjustment of the complexity of the resulting quantizers to computational constraints of decentralized sensors. In addition, DSLVQ approach shows significant improvements over the popular LVQ2 algorithm as well as the previously proposed Regression Tree approach for decentralized estimation.","PeriodicalId":377880,"journal":{"name":"2009 Data Compression Conference","volume":"77 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2009-03-16","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"3","resultStr":"{\"title\":\"Decentralized Estimation Using Learning Vector Quantization\",\"authors\":\"Mihajlo Grbovic, S. Vucetic\",\"doi\":\"10.1109/DCC.2009.77\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Decentralized estimation is an essential problem for a number of data fusion applications. In this paper we propose a variation of the Learning Vector Quantization (LVQ) algorithm, the Distortion Sensitive LVQ (DSLVQ), to be used for quantizer design in decentralized estimation. Experimental results suggest that DSLVQ results in high-quality quantizers and that it allows easy adjustment of the complexity of the resulting quantizers to computational constraints of decentralized sensors. In addition, DSLVQ approach shows significant improvements over the popular LVQ2 algorithm as well as the previously proposed Regression Tree approach for decentralized estimation.\",\"PeriodicalId\":377880,\"journal\":{\"name\":\"2009 Data Compression Conference\",\"volume\":\"77 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2009-03-16\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"3\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2009 Data Compression Conference\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/DCC.2009.77\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2009 Data Compression Conference","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/DCC.2009.77","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 3

摘要

分散估计是许多数据融合应用的关键问题。在本文中,我们提出了学习向量量化(LVQ)算法的一种变体,失真敏感LVQ (DSLVQ),用于分散估计中的量化器设计。实验结果表明,DSLVQ可以产生高质量的量化器,并且可以根据分散传感器的计算约束轻松调整所产生量化器的复杂性。此外,DSLVQ方法比流行的LVQ2算法以及先前提出的用于分散估计的回归树方法有显著改进。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Decentralized Estimation Using Learning Vector Quantization
Decentralized estimation is an essential problem for a number of data fusion applications. In this paper we propose a variation of the Learning Vector Quantization (LVQ) algorithm, the Distortion Sensitive LVQ (DSLVQ), to be used for quantizer design in decentralized estimation. Experimental results suggest that DSLVQ results in high-quality quantizers and that it allows easy adjustment of the complexity of the resulting quantizers to computational constraints of decentralized sensors. In addition, DSLVQ approach shows significant improvements over the popular LVQ2 algorithm as well as the previously proposed Regression Tree approach for decentralized estimation.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Analog Joint Source Channel Coding Using Space-Filling Curves and MMSE Decoding Tree Histogram Coding for Mobile Image Matching Clustered Reversible-KLT for Progressive Lossy-to-Lossless 3d Image Coding Optimized Source-Channel Coding of Video Signals in Packet Loss Environments New Families and New Members of Integer Sequence Based Coding Methods
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1