Linfeng Yang, Zhixiang Zhu, Chenwu Wang, Pei Wang, Shaobo Hei
{"title":"联合多尺度残差和运动特征学习用于动作识别","authors":"Linfeng Yang, Zhixiang Zhu, Chenwu Wang, Pei Wang, Shaobo Hei","doi":"10.1145/3573942.3574082","DOIUrl":null,"url":null,"abstract":"For action recognition, two-stream networks consisting of RGB and optical flow has been widely used, showing high recognition accuracy. However, optical flow computation is time-consuming and requires a large amount of storage space, and the recognition efficiency is very low. To alleviate this problem, we propose an Adaptive Multi-Scale Residual (AMSR) module and a Long Short Term Motion Squeeze (LSMS) module, which are inserted into the 2D convolutional neural network to improve the accuracy of action recognition and achieve a balance of accuracy and speed. The AMSR module adaptively fuses multi-scale feature maps to fully utilize the semantic information provided by deep feature maps and the detailed information provided by shallow feature maps. The LSMS module is a learnable lightweight motion feature extractor for learning long-term motion features of adjacent and non-adjacent frames, thus replacing the traditional optical flow and improving the accuracy of action recognition. Experimental results on UCF-101 and HMDB-51 datasets demonstrate that the method proposed in this paper achieves competitive performance compared to state-of-the-art methods with only a small increase in parameters and computational cost.","PeriodicalId":103293,"journal":{"name":"Proceedings of the 2022 5th International Conference on Artificial Intelligence and Pattern Recognition","volume":"1 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2022-09-23","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"0","resultStr":"{\"title\":\"Joint Multi-Scale Residual and Motion Feature Learning for Action Recognition\",\"authors\":\"Linfeng Yang, Zhixiang Zhu, Chenwu Wang, Pei Wang, Shaobo Hei\",\"doi\":\"10.1145/3573942.3574082\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"For action recognition, two-stream networks consisting of RGB and optical flow has been widely used, showing high recognition accuracy. However, optical flow computation is time-consuming and requires a large amount of storage space, and the recognition efficiency is very low. To alleviate this problem, we propose an Adaptive Multi-Scale Residual (AMSR) module and a Long Short Term Motion Squeeze (LSMS) module, which are inserted into the 2D convolutional neural network to improve the accuracy of action recognition and achieve a balance of accuracy and speed. The AMSR module adaptively fuses multi-scale feature maps to fully utilize the semantic information provided by deep feature maps and the detailed information provided by shallow feature maps. The LSMS module is a learnable lightweight motion feature extractor for learning long-term motion features of adjacent and non-adjacent frames, thus replacing the traditional optical flow and improving the accuracy of action recognition. Experimental results on UCF-101 and HMDB-51 datasets demonstrate that the method proposed in this paper achieves competitive performance compared to state-of-the-art methods with only a small increase in parameters and computational cost.\",\"PeriodicalId\":103293,\"journal\":{\"name\":\"Proceedings of the 2022 5th International Conference on Artificial Intelligence and Pattern Recognition\",\"volume\":\"1 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2022-09-23\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Proceedings of the 2022 5th International Conference on Artificial Intelligence and Pattern Recognition\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1145/3573942.3574082\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Proceedings of the 2022 5th International Conference on Artificial Intelligence and Pattern Recognition","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1145/3573942.3574082","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Joint Multi-Scale Residual and Motion Feature Learning for Action Recognition
For action recognition, two-stream networks consisting of RGB and optical flow has been widely used, showing high recognition accuracy. However, optical flow computation is time-consuming and requires a large amount of storage space, and the recognition efficiency is very low. To alleviate this problem, we propose an Adaptive Multi-Scale Residual (AMSR) module and a Long Short Term Motion Squeeze (LSMS) module, which are inserted into the 2D convolutional neural network to improve the accuracy of action recognition and achieve a balance of accuracy and speed. The AMSR module adaptively fuses multi-scale feature maps to fully utilize the semantic information provided by deep feature maps and the detailed information provided by shallow feature maps. The LSMS module is a learnable lightweight motion feature extractor for learning long-term motion features of adjacent and non-adjacent frames, thus replacing the traditional optical flow and improving the accuracy of action recognition. Experimental results on UCF-101 and HMDB-51 datasets demonstrate that the method proposed in this paper achieves competitive performance compared to state-of-the-art methods with only a small increase in parameters and computational cost.