预训练深度学习模型在脑肿瘤分类中的性能比较

A. Diker
{"title":"预训练深度学习模型在脑肿瘤分类中的性能比较","authors":"A. Diker","doi":"10.1109/EUROCON52738.2021.9535636","DOIUrl":null,"url":null,"abstract":"The brain tumor classification and detection are significant problems in computer-assisted diagnosis (CAD) for medical applications. In this study, the performance comparison of pre-trained deep learning models which are AlexNet, GoogleNet ,and ResNet-18 for the classification of brain MRI images was made. The performances of these models are compared with each other. Experimental results show that the AlexNet model achieves the highest accuracy at 96%. It is followed by the GoogleNet and ResNet-18 model with an accuracy of 90.66% and 88% respectively.","PeriodicalId":328338,"journal":{"name":"IEEE EUROCON 2021 - 19th International Conference on Smart Technologies","volume":"11 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-07-06","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"A Performance Comparison of Pre-trained Deep Learning Models to Classify Brain Tumor\",\"authors\":\"A. Diker\",\"doi\":\"10.1109/EUROCON52738.2021.9535636\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The brain tumor classification and detection are significant problems in computer-assisted diagnosis (CAD) for medical applications. In this study, the performance comparison of pre-trained deep learning models which are AlexNet, GoogleNet ,and ResNet-18 for the classification of brain MRI images was made. The performances of these models are compared with each other. Experimental results show that the AlexNet model achieves the highest accuracy at 96%. It is followed by the GoogleNet and ResNet-18 model with an accuracy of 90.66% and 88% respectively.\",\"PeriodicalId\":328338,\"journal\":{\"name\":\"IEEE EUROCON 2021 - 19th International Conference on Smart Technologies\",\"volume\":\"11 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-07-06\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"IEEE EUROCON 2021 - 19th International Conference on Smart Technologies\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/EUROCON52738.2021.9535636\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"IEEE EUROCON 2021 - 19th International Conference on Smart Technologies","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/EUROCON52738.2021.9535636","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

脑肿瘤的分类与检测是医学计算机辅助诊断(CAD)中的一个重要问题。本研究对预训练深度学习模型AlexNet、GoogleNet和ResNet-18在脑MRI图像分类方面的性能进行了比较。对这些模型的性能进行了比较。实验结果表明,AlexNet模型达到了96%的最高准确率。其次是GoogleNet和ResNet-18模型,准确率分别为90.66%和88%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
A Performance Comparison of Pre-trained Deep Learning Models to Classify Brain Tumor
The brain tumor classification and detection are significant problems in computer-assisted diagnosis (CAD) for medical applications. In this study, the performance comparison of pre-trained deep learning models which are AlexNet, GoogleNet ,and ResNet-18 for the classification of brain MRI images was made. The performances of these models are compared with each other. Experimental results show that the AlexNet model achieves the highest accuracy at 96%. It is followed by the GoogleNet and ResNet-18 model with an accuracy of 90.66% and 88% respectively.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Analysis of Exact and Approximating Dependences of the Active Resistance of Conductor on the Frequency of Current Under the Action of Skin Effect Efficient Pre-BPF based Sigma Delta Radio over Fiber System for 5G NR Fronthauls An Object-Oriented Verification Technique of FPGA-based Adjustment Systems for Video Graphics Accelerators Estimation of Mechanical Parameters and Tidal Current Velocity for a Tidal Turbine Test Driven Development in Action: Case Study of a Cross-Platform Web Application
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1