改善城市密集交叉口路段的交通

S. Arhin, A. Gatiba, Melissa F. Anderson, Melkamsew Ribbisso, Babin Manandhar
{"title":"改善城市密集交叉口路段的交通","authors":"S. Arhin, A. Gatiba, Melissa F. Anderson, Melkamsew Ribbisso, Babin Manandhar","doi":"10.4236/OJCE.2019.91004","DOIUrl":null,"url":null,"abstract":"In this research, a strategy to improve mobility and reduce delay on road segments is explored via modeling and simulation. Thirty selected corridors with combination of signalized and unsignalized intersections were identified for this study. Each segment consists of at least one AWSC and two signalized intersections at which field data were obtained (lane configurations, signal timing, traffic volumes, etc.). The selected AWSC intersections on the segments were within 305 m (1000 feet) from the upstream or downstream signalized intersections. Synchro software program was utilized to model the existing condition of the segments based on which the strategy for mobility improvement was explored. The field data were used as input in Synchro software application to model two scenarios: existing or the “before” scenario, and the “after” scenario. The unsignalized intersections were signalized (and optimized) in the “after” scenario. The measures of effectiveness used to assess the efficiency of the strategy were average travel speed, control delay and 95th percentile queue length. The analyses were conducted for both the morning (AM) and evening (PM) peak periods. The results of the analyses showed reductions in control delay and 95th percentile queue lengths that were statistically significant, while the average travel speed of vehicles significantly increased at 5% level of significance. The evaluation determined that the signalization of some unsignalized intersections (which are 305 m or less from existing signalized intersections) may improve mobility despite the fact that these locations do not meet the MUTCD warrants for signalization. These findings would aid transportation engineers and planners to consider and evaluate this option when making decisions on signalization of intersections in urban areas.","PeriodicalId":302856,"journal":{"name":"Open Journal of Civil Engineering","volume":"254 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2019-03-19","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"1","resultStr":"{\"title\":\"Improving Mobility on Segments with Closely Spaced Intersections in Urban Areas\",\"authors\":\"S. Arhin, A. Gatiba, Melissa F. Anderson, Melkamsew Ribbisso, Babin Manandhar\",\"doi\":\"10.4236/OJCE.2019.91004\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"In this research, a strategy to improve mobility and reduce delay on road segments is explored via modeling and simulation. Thirty selected corridors with combination of signalized and unsignalized intersections were identified for this study. Each segment consists of at least one AWSC and two signalized intersections at which field data were obtained (lane configurations, signal timing, traffic volumes, etc.). The selected AWSC intersections on the segments were within 305 m (1000 feet) from the upstream or downstream signalized intersections. Synchro software program was utilized to model the existing condition of the segments based on which the strategy for mobility improvement was explored. The field data were used as input in Synchro software application to model two scenarios: existing or the “before” scenario, and the “after” scenario. The unsignalized intersections were signalized (and optimized) in the “after” scenario. The measures of effectiveness used to assess the efficiency of the strategy were average travel speed, control delay and 95th percentile queue length. The analyses were conducted for both the morning (AM) and evening (PM) peak periods. The results of the analyses showed reductions in control delay and 95th percentile queue lengths that were statistically significant, while the average travel speed of vehicles significantly increased at 5% level of significance. The evaluation determined that the signalization of some unsignalized intersections (which are 305 m or less from existing signalized intersections) may improve mobility despite the fact that these locations do not meet the MUTCD warrants for signalization. These findings would aid transportation engineers and planners to consider and evaluate this option when making decisions on signalization of intersections in urban areas.\",\"PeriodicalId\":302856,\"journal\":{\"name\":\"Open Journal of Civil Engineering\",\"volume\":\"254 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2019-03-19\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"1\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Open Journal of Civil Engineering\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.4236/OJCE.2019.91004\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Open Journal of Civil Engineering","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.4236/OJCE.2019.91004","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 1

摘要

在本研究中,通过建模和仿真,探讨了提高交通机动性和减少路段延误的策略。本研究选定了30条有信号和无信号交叉路口的走廊。每个路段至少由一个AWSC和两个信号交叉口组成,在这些交叉口上获得现场数据(车道配置、信号定时、交通量等)。路段上选择的AWSC交叉口距离上游或下游信号交叉口在305米(1000英尺)以内。利用Synchro软件程序对车段现状进行建模,在此基础上探讨车段的移动性改进策略。在Synchro软件应用程序中使用现场数据作为输入来模拟两种场景:现有或“之前”场景和“之后”场景。在“之后”的场景中,没有信号的十字路口被信号化(并优化)。采用平均行驶速度、控制延迟和第95百分位队列长度来评估该策略的有效性。分析是在早上(AM)和晚上(PM)高峰期间进行的。分析结果显示,控制延迟和第95百分位队列长度的减少在统计学上具有显著性,而车辆的平均行驶速度在5%的显著水平上显著提高。评估确定,一些未信号交叉口(距离现有信号交叉口305米或更短)的信号化可能会改善机动性,尽管这些位置不符合MUTCD信号化要求。这些发现将有助于交通工程师和规划者在决定城市地区十字路口的信号时考虑和评估这一选择。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Improving Mobility on Segments with Closely Spaced Intersections in Urban Areas
In this research, a strategy to improve mobility and reduce delay on road segments is explored via modeling and simulation. Thirty selected corridors with combination of signalized and unsignalized intersections were identified for this study. Each segment consists of at least one AWSC and two signalized intersections at which field data were obtained (lane configurations, signal timing, traffic volumes, etc.). The selected AWSC intersections on the segments were within 305 m (1000 feet) from the upstream or downstream signalized intersections. Synchro software program was utilized to model the existing condition of the segments based on which the strategy for mobility improvement was explored. The field data were used as input in Synchro software application to model two scenarios: existing or the “before” scenario, and the “after” scenario. The unsignalized intersections were signalized (and optimized) in the “after” scenario. The measures of effectiveness used to assess the efficiency of the strategy were average travel speed, control delay and 95th percentile queue length. The analyses were conducted for both the morning (AM) and evening (PM) peak periods. The results of the analyses showed reductions in control delay and 95th percentile queue lengths that were statistically significant, while the average travel speed of vehicles significantly increased at 5% level of significance. The evaluation determined that the signalization of some unsignalized intersections (which are 305 m or less from existing signalized intersections) may improve mobility despite the fact that these locations do not meet the MUTCD warrants for signalization. These findings would aid transportation engineers and planners to consider and evaluate this option when making decisions on signalization of intersections in urban areas.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Interchange Sight Distance and Design: Aspects and Implementation A Slip-Force Device for Maintaining Constant Lateral Pressure on Retaining Structures in Expansive Soils Practical Engineering Behavior of Egyptian Collapsible Soils, Laboratory and In-Situ Experimental Study Structural Health Monitoring for Reinforced Concrete Containment Using Inner Electrical Resistivity Method Hardening Properties of Foamed Concrete with Circulating Fluidized Bed Boiler Ash, Blast Furnace Slag, and Desulfurization Gypsum as the Binder
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1