基于小波变换特征和j均值聚类的心电图无监督分析方法

J. Rodríguez-Sotelo, D. Cuesta-Frau, G. Castellanos-Domínguez
{"title":"基于小波变换特征和j均值聚类的心电图无监督分析方法","authors":"J. Rodríguez-Sotelo, D. Cuesta-Frau, G. Castellanos-Domínguez","doi":"10.1109/CIC.2007.4745552","DOIUrl":null,"url":null,"abstract":"Clustering is advisable technique for analysis and interpretation of long-term ECG Holter records. As a non-supervised method, several challenges are posed due to factors such as signal length (very long duration), noise presence, dynamic behavior and morphology variability (different patient physiology and/or pathology). This work describes an improved version of the k-means clustering algorithm (J-means) for this task. In order to reduce the number of heartbeats to process, a preclustering stage is also employed. Dissimilarity measure calculation is based on the Dynamic Time Warping approach. To assess the validity of the proposed method, a comparative study is carried out, using k-means, k-medians, hk-means, and J-means. Heartbeat features are extracted by means of WT coefficients and trace segmentation. Best results were achieved by the J-means algorithm, which reduces the clustering error down to 4.5% while the critical error tends to the minimal value.","PeriodicalId":406683,"journal":{"name":"2007 Computers in Cardiology","volume":"70 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2007-09-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"8","resultStr":"{\"title\":\"An improved method for unsupervised analysis of ECG beats based on WT features and J-means clustering\",\"authors\":\"J. Rodríguez-Sotelo, D. Cuesta-Frau, G. Castellanos-Domínguez\",\"doi\":\"10.1109/CIC.2007.4745552\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Clustering is advisable technique for analysis and interpretation of long-term ECG Holter records. As a non-supervised method, several challenges are posed due to factors such as signal length (very long duration), noise presence, dynamic behavior and morphology variability (different patient physiology and/or pathology). This work describes an improved version of the k-means clustering algorithm (J-means) for this task. In order to reduce the number of heartbeats to process, a preclustering stage is also employed. Dissimilarity measure calculation is based on the Dynamic Time Warping approach. To assess the validity of the proposed method, a comparative study is carried out, using k-means, k-medians, hk-means, and J-means. Heartbeat features are extracted by means of WT coefficients and trace segmentation. Best results were achieved by the J-means algorithm, which reduces the clustering error down to 4.5% while the critical error tends to the minimal value.\",\"PeriodicalId\":406683,\"journal\":{\"name\":\"2007 Computers in Cardiology\",\"volume\":\"70 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2007-09-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"8\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2007 Computers in Cardiology\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CIC.2007.4745552\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2007 Computers in Cardiology","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CIC.2007.4745552","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 8

摘要

聚类是分析和解释长期动态心电图记录的一种可行的技术。作为一种非监督方法,由于信号长度(持续时间很长)、噪声存在、动态行为和形态学变化(不同的患者生理和/或病理)等因素,提出了一些挑战。这项工作描述了k-means聚类算法(J-means)的改进版本。为了减少需要处理的心跳数,还采用了预聚类阶段。不同度量的计算基于动态时间翘曲方法。为了评估所提出方法的有效性,我们使用k-means、k-median、hk-means和J-means进行了比较研究。通过小波变换系数和轨迹分割提取心跳特征。J-means算法效果最好,聚类误差降至4.5%,临界误差趋于最小。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
An improved method for unsupervised analysis of ECG beats based on WT features and J-means clustering
Clustering is advisable technique for analysis and interpretation of long-term ECG Holter records. As a non-supervised method, several challenges are posed due to factors such as signal length (very long duration), noise presence, dynamic behavior and morphology variability (different patient physiology and/or pathology). This work describes an improved version of the k-means clustering algorithm (J-means) for this task. In order to reduce the number of heartbeats to process, a preclustering stage is also employed. Dissimilarity measure calculation is based on the Dynamic Time Warping approach. To assess the validity of the proposed method, a comparative study is carried out, using k-means, k-medians, hk-means, and J-means. Heartbeat features are extracted by means of WT coefficients and trace segmentation. Best results were achieved by the J-means algorithm, which reduces the clustering error down to 4.5% while the critical error tends to the minimal value.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Implementation and use of a patient data management system in the intensive care unit: A two-year experience Modelling effects of sotalol on T-wave morphology Vulnerability to reentry in a 3D regionally ischemic ventricular slab preparation: A simulation study Evaluation of multi-component Electrocardiogram beat detection algorithms: Implications of three different noise artifacts Dynamic 4D blood flow representation in the aorta and analysis from cine-MRI in patients
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1