R. Martínek, R. Kahankova, H. Skutová, P. Koudelka, J. Zidek, J. Koziorek
{"title":"胎儿腹部心电图提取的自适应信号处理技术","authors":"R. Martínek, R. Kahankova, H. Skutová, P. Koudelka, J. Zidek, J. Koziorek","doi":"10.1109/CSNDSP.2016.7573974","DOIUrl":null,"url":null,"abstract":"The extraction of the Fetal Electrocardiogram (fECG) from the composite Electrocardiogram (ECG) signal obtained from the abdominal lead is discussed. The main point of this paper is to introduce some of the most used Least Mean Squares (LMS) based Finite Impulse Response (FIR) Adaptive Filters and to determine which of them are the most effective under varying circumstances. Experimental results suggest the ideal combination of the chosen settings for these functions. Results of fECG extraction are assessed by Percentage Root-Mean-Square Difference (PRD), input and output Signal to Noise Ratios (SNRs), and Root Mean Square Error (RMSE). Based on simulations conclusions, optimal convergence constant value and filter order were empirically determined. Setting the optimal value of the convergence constant and filter order of adaptive algorithm can be considered a contribution to original results. These results can be used on real records fECG, where it is difficult to determine because of the missing reference.","PeriodicalId":298711,"journal":{"name":"2016 10th International Symposium on Communication Systems, Networks and Digital Signal Processing (CSNDSP)","volume":"121 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-07-20","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"20","resultStr":"{\"title\":\"Adaptive signal processing techniques for extracting abdominal fetal electrocardiogram\",\"authors\":\"R. Martínek, R. Kahankova, H. Skutová, P. Koudelka, J. Zidek, J. Koziorek\",\"doi\":\"10.1109/CSNDSP.2016.7573974\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"The extraction of the Fetal Electrocardiogram (fECG) from the composite Electrocardiogram (ECG) signal obtained from the abdominal lead is discussed. The main point of this paper is to introduce some of the most used Least Mean Squares (LMS) based Finite Impulse Response (FIR) Adaptive Filters and to determine which of them are the most effective under varying circumstances. Experimental results suggest the ideal combination of the chosen settings for these functions. Results of fECG extraction are assessed by Percentage Root-Mean-Square Difference (PRD), input and output Signal to Noise Ratios (SNRs), and Root Mean Square Error (RMSE). Based on simulations conclusions, optimal convergence constant value and filter order were empirically determined. Setting the optimal value of the convergence constant and filter order of adaptive algorithm can be considered a contribution to original results. These results can be used on real records fECG, where it is difficult to determine because of the missing reference.\",\"PeriodicalId\":298711,\"journal\":{\"name\":\"2016 10th International Symposium on Communication Systems, Networks and Digital Signal Processing (CSNDSP)\",\"volume\":\"121 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-07-20\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"20\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 10th International Symposium on Communication Systems, Networks and Digital Signal Processing (CSNDSP)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/CSNDSP.2016.7573974\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 10th International Symposium on Communication Systems, Networks and Digital Signal Processing (CSNDSP)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/CSNDSP.2016.7573974","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Adaptive signal processing techniques for extracting abdominal fetal electrocardiogram
The extraction of the Fetal Electrocardiogram (fECG) from the composite Electrocardiogram (ECG) signal obtained from the abdominal lead is discussed. The main point of this paper is to introduce some of the most used Least Mean Squares (LMS) based Finite Impulse Response (FIR) Adaptive Filters and to determine which of them are the most effective under varying circumstances. Experimental results suggest the ideal combination of the chosen settings for these functions. Results of fECG extraction are assessed by Percentage Root-Mean-Square Difference (PRD), input and output Signal to Noise Ratios (SNRs), and Root Mean Square Error (RMSE). Based on simulations conclusions, optimal convergence constant value and filter order were empirically determined. Setting the optimal value of the convergence constant and filter order of adaptive algorithm can be considered a contribution to original results. These results can be used on real records fECG, where it is difficult to determine because of the missing reference.