基于流小波包分解的振动传感器数据特征选择

Randall Wald, T. Khoshgoftaar, J. Sloan
{"title":"基于流小波包分解的振动传感器数据特征选择","authors":"Randall Wald, T. Khoshgoftaar, J. Sloan","doi":"10.1109/ICTAI.2011.168","DOIUrl":null,"url":null,"abstract":"Vibration signals play a valuable role in the remote monitoring of high-assurance machinery such as ocean turbines. Because they are waveforms, vibration data must be transformed prior to being incorporated into a machine condition monitoring/prognostic health monitoring (MCM/PHM) solution to detect which frequencies of oscillation are most prevalent. One downside of these transformations, especially the streaming version of the wavelet packet decomposition (denoted SWPD), is that they can produce a large number of features, hindering the model building and evaluation process. In this paper we demonstrate how feature selection techniques may be applied to the output of the SWPD transformation, vastly reducing the total number of features used to build models. The resulting data can be used to build more accurate models for use in MCM/PHM while minimizing computation time.","PeriodicalId":332661,"journal":{"name":"2011 IEEE 23rd International Conference on Tools with Artificial Intelligence","volume":"19 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2011-11-07","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Feature Selection for Vibration Sensor Data Transformed by a Streaming Wavelet Packet Decomposition\",\"authors\":\"Randall Wald, T. Khoshgoftaar, J. Sloan\",\"doi\":\"10.1109/ICTAI.2011.168\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Vibration signals play a valuable role in the remote monitoring of high-assurance machinery such as ocean turbines. Because they are waveforms, vibration data must be transformed prior to being incorporated into a machine condition monitoring/prognostic health monitoring (MCM/PHM) solution to detect which frequencies of oscillation are most prevalent. One downside of these transformations, especially the streaming version of the wavelet packet decomposition (denoted SWPD), is that they can produce a large number of features, hindering the model building and evaluation process. In this paper we demonstrate how feature selection techniques may be applied to the output of the SWPD transformation, vastly reducing the total number of features used to build models. The resulting data can be used to build more accurate models for use in MCM/PHM while minimizing computation time.\",\"PeriodicalId\":332661,\"journal\":{\"name\":\"2011 IEEE 23rd International Conference on Tools with Artificial Intelligence\",\"volume\":\"19 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2011-11-07\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2011 IEEE 23rd International Conference on Tools with Artificial Intelligence\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICTAI.2011.168\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2011 IEEE 23rd International Conference on Tools with Artificial Intelligence","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICTAI.2011.168","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

振动信号在海洋涡轮机等高保证机械的远程监测中发挥着重要作用。由于振动数据是波形,因此在将其纳入机器状态监测/预后健康监测(MCM/PHM)解决方案之前,必须对其进行转换,以检测哪些振动频率最普遍。这些转换的一个缺点,特别是小波包分解的流版本(表示为SWPD),是它们可以产生大量的特征,阻碍了模型构建和评估过程。在本文中,我们演示了如何将特征选择技术应用于SWPD转换的输出,从而大大减少了用于构建模型的特征总数。结果数据可用于构建更精确的MCM/PHM模型,同时最大限度地减少计算时间。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Feature Selection for Vibration Sensor Data Transformed by a Streaming Wavelet Packet Decomposition
Vibration signals play a valuable role in the remote monitoring of high-assurance machinery such as ocean turbines. Because they are waveforms, vibration data must be transformed prior to being incorporated into a machine condition monitoring/prognostic health monitoring (MCM/PHM) solution to detect which frequencies of oscillation are most prevalent. One downside of these transformations, especially the streaming version of the wavelet packet decomposition (denoted SWPD), is that they can produce a large number of features, hindering the model building and evaluation process. In this paper we demonstrate how feature selection techniques may be applied to the output of the SWPD transformation, vastly reducing the total number of features used to build models. The resulting data can be used to build more accurate models for use in MCM/PHM while minimizing computation time.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Independence-Based MAP for Markov Networks Structure Discovery Flexible, Efficient and Interactive Retrieval for Supporting In-silico Studies of Endobacteria Recurrent Neural Networks for Moisture Content Prediction in Seed Corn Dryer Buildings Top Subspace Synthesizing for Promotional Subspace Mining RELIEF-C: Efficient Feature Selection for Clustering over Noisy Data
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1