印尼语口语方言的分类与聚类

Jacqueline Ibrahim, D. Lestari
{"title":"印尼语口语方言的分类与聚类","authors":"Jacqueline Ibrahim, D. Lestari","doi":"10.1109/ICODSE.2017.8285852","DOIUrl":null,"url":null,"abstract":"This paper explains classification using Support Vector Machines (SVM) technique and clustering using K-means technique in identifying eight spoken dialects in Indonesian language. Dialect identification is important to build a better Automatic Speech Recognition system. The experiment in this research is divided into using three features of sound; Mel Frequency Cepstral Coefficient (MFCC), spectral flux, and spectral centroid, and compares it to model with MFCC features only. For methods, it uses one-against-one and all-at-once as comparison. The best result is from using SVM one-against-one with three features which gives 55%.","PeriodicalId":366005,"journal":{"name":"2017 International Conference on Data and Software Engineering (ICoDSE)","volume":"10 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"5","resultStr":"{\"title\":\"Classification and clustering to identify spoken dialects in Indonesian\",\"authors\":\"Jacqueline Ibrahim, D. Lestari\",\"doi\":\"10.1109/ICODSE.2017.8285852\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper explains classification using Support Vector Machines (SVM) technique and clustering using K-means technique in identifying eight spoken dialects in Indonesian language. Dialect identification is important to build a better Automatic Speech Recognition system. The experiment in this research is divided into using three features of sound; Mel Frequency Cepstral Coefficient (MFCC), spectral flux, and spectral centroid, and compares it to model with MFCC features only. For methods, it uses one-against-one and all-at-once as comparison. The best result is from using SVM one-against-one with three features which gives 55%.\",\"PeriodicalId\":366005,\"journal\":{\"name\":\"2017 International Conference on Data and Software Engineering (ICoDSE)\",\"volume\":\"10 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"5\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 International Conference on Data and Software Engineering (ICoDSE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ICODSE.2017.8285852\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 International Conference on Data and Software Engineering (ICoDSE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ICODSE.2017.8285852","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 5

摘要

本文介绍了使用支持向量机(SVM)技术进行分类,并使用K-means技术进行聚类,以识别印度尼西亚语的8种口语方言。方言识别是构建更好的语音自动识别系统的重要环节。本研究的实验分为利用声音的三个特征;Mel频率倒谱系数(MFCC)、谱通量和谱质心,并将其与仅具有MFCC特征的模型进行比较。对于方法,它使用一对一和一次性全部进行比较。最好的结果是使用支持向量机一对一的三个特征,给出55%。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Classification and clustering to identify spoken dialects in Indonesian
This paper explains classification using Support Vector Machines (SVM) technique and clustering using K-means technique in identifying eight spoken dialects in Indonesian language. Dialect identification is important to build a better Automatic Speech Recognition system. The experiment in this research is divided into using three features of sound; Mel Frequency Cepstral Coefficient (MFCC), spectral flux, and spectral centroid, and compares it to model with MFCC features only. For methods, it uses one-against-one and all-at-once as comparison. The best result is from using SVM one-against-one with three features which gives 55%.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
Hybrid recommender system using random walk with restart for social tagging system Comparison of optimal path finding techniques for minimal diagnosis in mapping repair Cells identification of acute myeloid leukemia AML M0 and AML M1 using K-nearest neighbour based on morphological images Utility function based-mixed integer nonlinear programming (MINLP) problem model of information service pricing schemes Graph clustering using dirichlet process mixture model
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1