{"title":"Rayleigh、expert、Nakagami-m和Weibull衰落下VANETs的性能分析","authors":"Furqan Jameel, Faisal, M. Haider, A. A. Butt","doi":"10.1109/C-CODE.2017.7918915","DOIUrl":null,"url":null,"abstract":"Vehicular Ad-hoc Networks (VANETs) are considered as one of the promising technologies for reduction of accidents and provisioning of infotainment services on the road. Due to high mobility of vehicles, wireless channel response rapidly changes from time to time which results into random fading. Therefore, this paper provides in depth analysis of performance of VANETs under different fading channels. To be specific, we adopt the cluster based approach to analytically model VANETs. Closed-form expressions of packet loss probability for different fading (i.e. Rayleigh, Rician, Nakagami-m and Weibull channel) models have been provided considering both MAC and Physical Layer characteristics. The derived expressions also encompass the effect of decoding failure and packet collision based on signal to noise ratio (SNR) and back-off timer, respectively. Our results characterizes the impact of channel conditions, vehicle speed, and contention window on the performance of the cluster based VANETs. Extensive simulations are performed to verify our findings.","PeriodicalId":344222,"journal":{"name":"2017 International Conference on Communication, Computing and Digital Systems (C-CODE)","volume":"41 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2017-03-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"21","resultStr":"{\"title\":\"Performance analysis of VANETs under Rayleigh, Rician, Nakagami-m and Weibull fading\",\"authors\":\"Furqan Jameel, Faisal, M. Haider, A. A. Butt\",\"doi\":\"10.1109/C-CODE.2017.7918915\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Vehicular Ad-hoc Networks (VANETs) are considered as one of the promising technologies for reduction of accidents and provisioning of infotainment services on the road. Due to high mobility of vehicles, wireless channel response rapidly changes from time to time which results into random fading. Therefore, this paper provides in depth analysis of performance of VANETs under different fading channels. To be specific, we adopt the cluster based approach to analytically model VANETs. Closed-form expressions of packet loss probability for different fading (i.e. Rayleigh, Rician, Nakagami-m and Weibull channel) models have been provided considering both MAC and Physical Layer characteristics. The derived expressions also encompass the effect of decoding failure and packet collision based on signal to noise ratio (SNR) and back-off timer, respectively. Our results characterizes the impact of channel conditions, vehicle speed, and contention window on the performance of the cluster based VANETs. Extensive simulations are performed to verify our findings.\",\"PeriodicalId\":344222,\"journal\":{\"name\":\"2017 International Conference on Communication, Computing and Digital Systems (C-CODE)\",\"volume\":\"41 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2017-03-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"21\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2017 International Conference on Communication, Computing and Digital Systems (C-CODE)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/C-CODE.2017.7918915\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2017 International Conference on Communication, Computing and Digital Systems (C-CODE)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/C-CODE.2017.7918915","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
Performance analysis of VANETs under Rayleigh, Rician, Nakagami-m and Weibull fading
Vehicular Ad-hoc Networks (VANETs) are considered as one of the promising technologies for reduction of accidents and provisioning of infotainment services on the road. Due to high mobility of vehicles, wireless channel response rapidly changes from time to time which results into random fading. Therefore, this paper provides in depth analysis of performance of VANETs under different fading channels. To be specific, we adopt the cluster based approach to analytically model VANETs. Closed-form expressions of packet loss probability for different fading (i.e. Rayleigh, Rician, Nakagami-m and Weibull channel) models have been provided considering both MAC and Physical Layer characteristics. The derived expressions also encompass the effect of decoding failure and packet collision based on signal to noise ratio (SNR) and back-off timer, respectively. Our results characterizes the impact of channel conditions, vehicle speed, and contention window on the performance of the cluster based VANETs. Extensive simulations are performed to verify our findings.