{"title":"用于片上实验室平台的片上可编程多通道电源","authors":"M. Bouali, Benoit Auclair, M. Sawan, A. Miled","doi":"10.1109/ISBB.2014.6820897","DOIUrl":null,"url":null,"abstract":"This paper presents a reprogrammable low-voltage power-supply integrated circuit for low resistive load down to 180 Ω. The achieved chip is dedicated for biomedical lab-on-chip (LoC) platforms. The proposed system includes two positive and two negative fully independent output voltage channels. Each positive and negative channel provides a reprogrammable DC output which varies from 14.23 mV to 1.42 V and -1.54 V to 0 V, respectively. Each channel is controlled through a reprogrammable reference voltage circuit with an 8-bit digital to analog converter (DAC). A wireless real-time control of output signals amplitude is performed with LabVIEW and FPGA-based interface. The proposed architecture is implemented with 0.18 μm 3.3 V 1-poly 6-metal CMOS technology. The chip area is 1.5 mm2. Post-layout simulations show that the minimum voltage step is 12.21 mV. The accuracy of output voltage is 5 mV and the measured power consumption is 35 mW.","PeriodicalId":265886,"journal":{"name":"2014 IEEE International Symposium on Bioelectronics and Bioinformatics (IEEE ISBB 2014)","volume":"20 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2014-04-11","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"An on-chip programmable multichannel power supply for a lab-on-chip platform\",\"authors\":\"M. Bouali, Benoit Auclair, M. Sawan, A. Miled\",\"doi\":\"10.1109/ISBB.2014.6820897\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a reprogrammable low-voltage power-supply integrated circuit for low resistive load down to 180 Ω. The achieved chip is dedicated for biomedical lab-on-chip (LoC) platforms. The proposed system includes two positive and two negative fully independent output voltage channels. Each positive and negative channel provides a reprogrammable DC output which varies from 14.23 mV to 1.42 V and -1.54 V to 0 V, respectively. Each channel is controlled through a reprogrammable reference voltage circuit with an 8-bit digital to analog converter (DAC). A wireless real-time control of output signals amplitude is performed with LabVIEW and FPGA-based interface. The proposed architecture is implemented with 0.18 μm 3.3 V 1-poly 6-metal CMOS technology. The chip area is 1.5 mm2. Post-layout simulations show that the minimum voltage step is 12.21 mV. The accuracy of output voltage is 5 mV and the measured power consumption is 35 mW.\",\"PeriodicalId\":265886,\"journal\":{\"name\":\"2014 IEEE International Symposium on Bioelectronics and Bioinformatics (IEEE ISBB 2014)\",\"volume\":\"20 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2014-04-11\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2014 IEEE International Symposium on Bioelectronics and Bioinformatics (IEEE ISBB 2014)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/ISBB.2014.6820897\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2014 IEEE International Symposium on Bioelectronics and Bioinformatics (IEEE ISBB 2014)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/ISBB.2014.6820897","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
An on-chip programmable multichannel power supply for a lab-on-chip platform
This paper presents a reprogrammable low-voltage power-supply integrated circuit for low resistive load down to 180 Ω. The achieved chip is dedicated for biomedical lab-on-chip (LoC) platforms. The proposed system includes two positive and two negative fully independent output voltage channels. Each positive and negative channel provides a reprogrammable DC output which varies from 14.23 mV to 1.42 V and -1.54 V to 0 V, respectively. Each channel is controlled through a reprogrammable reference voltage circuit with an 8-bit digital to analog converter (DAC). A wireless real-time control of output signals amplitude is performed with LabVIEW and FPGA-based interface. The proposed architecture is implemented with 0.18 μm 3.3 V 1-poly 6-metal CMOS technology. The chip area is 1.5 mm2. Post-layout simulations show that the minimum voltage step is 12.21 mV. The accuracy of output voltage is 5 mV and the measured power consumption is 35 mW.