海洋环境非均匀性和异常图像分析方法的发展

I. Shishkin, A. N. Grekov
{"title":"海洋环境非均匀性和异常图像分析方法的发展","authors":"I. Shishkin, A. N. Grekov","doi":"10.1109/RusAutoCon52004.2021.9537347","DOIUrl":null,"url":null,"abstract":"This paper presents a modified image and video analysis model designed to detect nonhomogeneity and anomalies in the marine environment. Unlike known alternatives, the model can detect natural objects after being trained on scarce data and having access to limited computational resources, in anomalous visual monitoring data collected directly in the marine environment. Accuracy in terms of type I and II errors has been improved by implementing additional preprocessing using intelligent anomaly detection and elimination methods. Requirements for the diversity of training sets have been lowered significantly, whilst the use of invariant metrics with adaptive thresholds improves detection adequacy in cases of affine distortions of scaling and rotation of monitored objects. The paper further compares the results of numerical experiments run on real-world data of in-situ monitoring of marine objects.","PeriodicalId":106150,"journal":{"name":"2021 International Russian Automation Conference (RusAutoCon)","volume":"14 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2021-09-05","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"2","resultStr":"{\"title\":\"Development of Image Analysis Methods for Detecting Nonhomogeneity and Anomalies in the Marine Environment\",\"authors\":\"I. Shishkin, A. N. Grekov\",\"doi\":\"10.1109/RusAutoCon52004.2021.9537347\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"This paper presents a modified image and video analysis model designed to detect nonhomogeneity and anomalies in the marine environment. Unlike known alternatives, the model can detect natural objects after being trained on scarce data and having access to limited computational resources, in anomalous visual monitoring data collected directly in the marine environment. Accuracy in terms of type I and II errors has been improved by implementing additional preprocessing using intelligent anomaly detection and elimination methods. Requirements for the diversity of training sets have been lowered significantly, whilst the use of invariant metrics with adaptive thresholds improves detection adequacy in cases of affine distortions of scaling and rotation of monitored objects. The paper further compares the results of numerical experiments run on real-world data of in-situ monitoring of marine objects.\",\"PeriodicalId\":106150,\"journal\":{\"name\":\"2021 International Russian Automation Conference (RusAutoCon)\",\"volume\":\"14 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2021-09-05\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"2\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2021 International Russian Automation Conference (RusAutoCon)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/RusAutoCon52004.2021.9537347\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2021 International Russian Automation Conference (RusAutoCon)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/RusAutoCon52004.2021.9537347","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 2

摘要

本文提出了一种改进的图像和视频分析模型,用于检测海洋环境中的非均匀性和异常。与已知的替代方案不同,该模型可以在直接从海洋环境中收集的异常视觉监测数据中,在稀缺数据和有限计算资源的训练下检测自然物体。通过使用智能异常检测和消除方法实施额外的预处理,提高了I型和II型错误的准确性。对训练集多样性的要求已经大大降低,同时使用具有自适应阈值的不变度量提高了在被监测对象缩放和旋转的仿射扭曲情况下的检测充分性。本文进一步比较了在实际海洋目标现场监测数据上进行的数值实验结果。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Development of Image Analysis Methods for Detecting Nonhomogeneity and Anomalies in the Marine Environment
This paper presents a modified image and video analysis model designed to detect nonhomogeneity and anomalies in the marine environment. Unlike known alternatives, the model can detect natural objects after being trained on scarce data and having access to limited computational resources, in anomalous visual monitoring data collected directly in the marine environment. Accuracy in terms of type I and II errors has been improved by implementing additional preprocessing using intelligent anomaly detection and elimination methods. Requirements for the diversity of training sets have been lowered significantly, whilst the use of invariant metrics with adaptive thresholds improves detection adequacy in cases of affine distortions of scaling and rotation of monitored objects. The paper further compares the results of numerical experiments run on real-world data of in-situ monitoring of marine objects.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
An Improved Algorithm for Arc Furnace Mode Control with Dynamic Arc Length Correction at Metal Refining Period Part Position Correction During Assembly According to Force and Torque Sensor Signals Formation of a Digital Footprint Based on the Characteristics of Computer Hardware to Identity APCS Users Static Devices to Prevent Unnecessary Disconnections of Gas-Piston Units in Transients Model-Based Architecture for Control System Design with Application of SIMO Neural Network
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1