用于亚10nm节点的垂直堆叠纳米线mosfet:先进的地形,器件,可变性和可靠性模拟

M. Karner, O. Baumgartner, Z. Stanojevic, F. Schanovsky, G. Strof, C. Kernstock, H. Karner, G. Rzepa, T. Grasset
{"title":"用于亚10nm节点的垂直堆叠纳米线mosfet:先进的地形,器件,可变性和可靠性模拟","authors":"M. Karner, O. Baumgartner, Z. Stanojevic, F. Schanovsky, G. Strof, C. Kernstock, H. Karner, G. Rzepa, T. Grasset","doi":"10.1109/IEDM.2016.7838516","DOIUrl":null,"url":null,"abstract":"Using an advanced simulation framework we analyze a recent sub-10 nm technology demonstration based on stacked nanowire transistors (NW-FETs). The study encompasses (i) topography simulation which realistically reproduces the fabricated device, (ii) device simulation based on the subband Boltzmann transport equation (iii) a comprehensive set of scattering models for the gate stack, (iv) physical models for time-zero variability and BTI device degradation. We find that (i) the fabrication process introduces parasitic capacitances not present in a comparable FinFET, (ii) the device performance is significantly affected by interface-charge-induced Coulomb scattering resulting in up to 50% reduction in drain current compared to an ideal device, (iii) device time-zero variability is increased due to a lower amount of dopant atoms per device, (iv) the device is more affected by BTI than a comparable FinFET. Using physics-based TCAD for technology path-finding and device optimization, we are able to point out critical improvements required for the stacked NW-FET to surpass current FinFET technology.","PeriodicalId":186544,"journal":{"name":"2016 IEEE International Electron Devices Meeting (IEDM)","volume":"60 1","pages":"0"},"PeriodicalIF":0.0000,"publicationDate":"2016-12-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"","citationCount":"26","resultStr":"{\"title\":\"Vertically stacked nanowire MOSFETs for sub-10nm nodes: Advanced topography, device, variability, and reliability simulations\",\"authors\":\"M. Karner, O. Baumgartner, Z. Stanojevic, F. Schanovsky, G. Strof, C. Kernstock, H. Karner, G. Rzepa, T. Grasset\",\"doi\":\"10.1109/IEDM.2016.7838516\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"Using an advanced simulation framework we analyze a recent sub-10 nm technology demonstration based on stacked nanowire transistors (NW-FETs). The study encompasses (i) topography simulation which realistically reproduces the fabricated device, (ii) device simulation based on the subband Boltzmann transport equation (iii) a comprehensive set of scattering models for the gate stack, (iv) physical models for time-zero variability and BTI device degradation. We find that (i) the fabrication process introduces parasitic capacitances not present in a comparable FinFET, (ii) the device performance is significantly affected by interface-charge-induced Coulomb scattering resulting in up to 50% reduction in drain current compared to an ideal device, (iii) device time-zero variability is increased due to a lower amount of dopant atoms per device, (iv) the device is more affected by BTI than a comparable FinFET. Using physics-based TCAD for technology path-finding and device optimization, we are able to point out critical improvements required for the stacked NW-FET to surpass current FinFET technology.\",\"PeriodicalId\":186544,\"journal\":{\"name\":\"2016 IEEE International Electron Devices Meeting (IEDM)\",\"volume\":\"60 1\",\"pages\":\"0\"},\"PeriodicalIF\":0.0000,\"publicationDate\":\"2016-12-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"\",\"citationCount\":\"26\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"2016 IEEE International Electron Devices Meeting (IEDM)\",\"FirstCategoryId\":\"1085\",\"ListUrlMain\":\"https://doi.org/10.1109/IEDM.2016.7838516\",\"RegionNum\":0,\"RegionCategory\":null,\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"\",\"JCRName\":\"\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"2016 IEEE International Electron Devices Meeting (IEDM)","FirstCategoryId":"1085","ListUrlMain":"https://doi.org/10.1109/IEDM.2016.7838516","RegionNum":0,"RegionCategory":null,"ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"","JCRName":"","Score":null,"Total":0}
引用次数: 26

摘要

利用先进的仿真框架,我们分析了最近基于堆叠纳米线晶体管(nw - fet)的亚10纳米技术演示。该研究包括(i)真实再现制造器件的地形模拟,(ii)基于子带玻尔兹曼输运方程的器件模拟,(iii)栅极堆栈的综合散射模型,(iv)时间零变变性和BTI器件退化的物理模型。我们发现(i)制造过程引入了可比较的FinFET中不存在的寄生电容,(ii)与理想器件相比,器件性能受到界面电荷诱导的库仑散射的显著影响,导致漏极电流减少高达50%,(iii)由于每个器件的掺杂原子量较低,器件时间零可变性增加,(iv)器件受BTI的影响比可比较的FinFET更大。使用基于物理的TCAD进行技术寻径和器件优化,我们能够指出堆叠NW-FET超越当前FinFET技术所需的关键改进。
本文章由计算机程序翻译,如有差异,请以英文原文为准。
查看原文
分享 分享
微信好友 朋友圈 QQ好友 复制链接
本刊更多论文
Vertically stacked nanowire MOSFETs for sub-10nm nodes: Advanced topography, device, variability, and reliability simulations
Using an advanced simulation framework we analyze a recent sub-10 nm technology demonstration based on stacked nanowire transistors (NW-FETs). The study encompasses (i) topography simulation which realistically reproduces the fabricated device, (ii) device simulation based on the subband Boltzmann transport equation (iii) a comprehensive set of scattering models for the gate stack, (iv) physical models for time-zero variability and BTI device degradation. We find that (i) the fabrication process introduces parasitic capacitances not present in a comparable FinFET, (ii) the device performance is significantly affected by interface-charge-induced Coulomb scattering resulting in up to 50% reduction in drain current compared to an ideal device, (iii) device time-zero variability is increased due to a lower amount of dopant atoms per device, (iv) the device is more affected by BTI than a comparable FinFET. Using physics-based TCAD for technology path-finding and device optimization, we are able to point out critical improvements required for the stacked NW-FET to surpass current FinFET technology.
求助全文
通过发布文献求助,成功后即可免费获取论文全文。 去求助
来源期刊
自引率
0.00%
发文量
0
期刊最新文献
SOI technology for quantum information processing Sustainable electronics for nano-spacecraft in deep space missions Current status and challenges of the modeling of organic photodiodes and solar cells Triboelectric energy harvester with an ultra-thin tribo-dielectric layer by initiated CVD and investigation of underlying physics in the triboelectricity 256×256, 100kfps, 61% Fill-factor time-resolved SPAD image sensor for microscopy applications
×
引用
GB/T 7714-2015
复制
MLA
复制
APA
复制
导出至
BibTeX EndNote RefMan NoteFirst NoteExpress
×
×
提示
您的信息不完整,为了账户安全,请先补充。
现在去补充
×
提示
您因"违规操作"
具体请查看互助需知
我知道了
×
提示
现在去查看 取消
×
提示
确定
0
微信
客服QQ
Book学术公众号 扫码关注我们
反馈
×
意见反馈
请填写您的意见或建议
请填写您的手机或邮箱
已复制链接
已复制链接
快去分享给好友吧!
我知道了
×
扫码分享
扫码分享
Book学术官方微信
Book学术文献互助
Book学术文献互助群
群 号:481959085
Book学术
文献互助 智能选刊 最新文献 互助须知 联系我们:info@booksci.cn
Book学术提供免费学术资源搜索服务,方便国内外学者检索中英文文献。致力于提供最便捷和优质的服务体验。
Copyright © 2023 Book学术 All rights reserved.
ghs 京公网安备 11010802042870号 京ICP备2023020795号-1