Felipe Machado , Rubén Nieto , Jesús Fernández-Conde , David Lobato , José M. Cañas
{"title":"使用开放式fpga的基于视觉的机器人","authors":"Felipe Machado , Rubén Nieto , Jesús Fernández-Conde , David Lobato , José M. Cañas","doi":"10.1016/j.micpro.2023.104974","DOIUrl":null,"url":null,"abstract":"<div><p>Robotics increasingly provides practical applications for society, such as manufacturing, autonomous driving, robot vacuum cleaners, robots in logistics, drones for inspection, etc. Typical requirements in this field are fast response time, low power consumption, parallelism, and flexibility. According to these features, FPGAs are a suitable computing substrate for robots. A few vendors have dominated the FPGA market with their proprietary tools and hardware devices, resulting in fragmented ecosystems with few standards and little interoperation. New and complete open toolchains for FPGAs are emerging from the open-source community. This article presents an open-source library of Verilog modules useful for vision-based robots, including reusable image processing blocks for perception and reactive control blocks. This library has been developed using open tools, but its Verilog modules are fully compatible with any proprietary toolchain. In addition, three applications with a real robot and open FPGAs have been developed for experimental validation using this library. In the last application, the mobile robot successfully follows a colored object using two low-cost cameras (to increase the robot’s field of view) and includes a third camera on top of a servo-driven turret for tracking a second independent object while following the first one in parallel. Resource consumption of all applications has been measured and compared with state-of-the-art proprietary toolchains, revealing that reconfigurable computing with open FPGAs using open tools is now an attractive alternative to designing and creating intelligent vision-based robotic applications using vendor-dependent proprietary tools and FPGAs.</p></div>","PeriodicalId":49815,"journal":{"name":"Microprocessors and Microsystems","volume":null,"pages":null},"PeriodicalIF":1.9000,"publicationDate":"2023-11-01","publicationTypes":"Journal Article","fieldsOfStudy":null,"isOpenAccess":false,"openAccessPdf":"https://www.sciencedirect.com/science/article/pii/S0141933123002193/pdfft?md5=944968e7587656838631a9dd978cf062&pid=1-s2.0-S0141933123002193-main.pdf","citationCount":"0","resultStr":"{\"title\":\"Vision-based robotics using open FPGAs\",\"authors\":\"Felipe Machado , Rubén Nieto , Jesús Fernández-Conde , David Lobato , José M. Cañas\",\"doi\":\"10.1016/j.micpro.2023.104974\",\"DOIUrl\":null,\"url\":null,\"abstract\":\"<div><p>Robotics increasingly provides practical applications for society, such as manufacturing, autonomous driving, robot vacuum cleaners, robots in logistics, drones for inspection, etc. Typical requirements in this field are fast response time, low power consumption, parallelism, and flexibility. According to these features, FPGAs are a suitable computing substrate for robots. A few vendors have dominated the FPGA market with their proprietary tools and hardware devices, resulting in fragmented ecosystems with few standards and little interoperation. New and complete open toolchains for FPGAs are emerging from the open-source community. This article presents an open-source library of Verilog modules useful for vision-based robots, including reusable image processing blocks for perception and reactive control blocks. This library has been developed using open tools, but its Verilog modules are fully compatible with any proprietary toolchain. In addition, three applications with a real robot and open FPGAs have been developed for experimental validation using this library. In the last application, the mobile robot successfully follows a colored object using two low-cost cameras (to increase the robot’s field of view) and includes a third camera on top of a servo-driven turret for tracking a second independent object while following the first one in parallel. Resource consumption of all applications has been measured and compared with state-of-the-art proprietary toolchains, revealing that reconfigurable computing with open FPGAs using open tools is now an attractive alternative to designing and creating intelligent vision-based robotic applications using vendor-dependent proprietary tools and FPGAs.</p></div>\",\"PeriodicalId\":49815,\"journal\":{\"name\":\"Microprocessors and Microsystems\",\"volume\":null,\"pages\":null},\"PeriodicalIF\":1.9000,\"publicationDate\":\"2023-11-01\",\"publicationTypes\":\"Journal Article\",\"fieldsOfStudy\":null,\"isOpenAccess\":false,\"openAccessPdf\":\"https://www.sciencedirect.com/science/article/pii/S0141933123002193/pdfft?md5=944968e7587656838631a9dd978cf062&pid=1-s2.0-S0141933123002193-main.pdf\",\"citationCount\":\"0\",\"resultStr\":null,\"platform\":\"Semanticscholar\",\"paperid\":null,\"PeriodicalName\":\"Microprocessors and Microsystems\",\"FirstCategoryId\":\"94\",\"ListUrlMain\":\"https://www.sciencedirect.com/science/article/pii/S0141933123002193\",\"RegionNum\":4,\"RegionCategory\":\"计算机科学\",\"ArticlePicture\":[],\"TitleCN\":null,\"AbstractTextCN\":null,\"PMCID\":null,\"EPubDate\":\"\",\"PubModel\":\"\",\"JCR\":\"Q3\",\"JCRName\":\"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE\",\"Score\":null,\"Total\":0}","platform":"Semanticscholar","paperid":null,"PeriodicalName":"Microprocessors and Microsystems","FirstCategoryId":"94","ListUrlMain":"https://www.sciencedirect.com/science/article/pii/S0141933123002193","RegionNum":4,"RegionCategory":"计算机科学","ArticlePicture":[],"TitleCN":null,"AbstractTextCN":null,"PMCID":null,"EPubDate":"","PubModel":"","JCR":"Q3","JCRName":"COMPUTER SCIENCE, HARDWARE & ARCHITECTURE","Score":null,"Total":0}
Robotics increasingly provides practical applications for society, such as manufacturing, autonomous driving, robot vacuum cleaners, robots in logistics, drones for inspection, etc. Typical requirements in this field are fast response time, low power consumption, parallelism, and flexibility. According to these features, FPGAs are a suitable computing substrate for robots. A few vendors have dominated the FPGA market with their proprietary tools and hardware devices, resulting in fragmented ecosystems with few standards and little interoperation. New and complete open toolchains for FPGAs are emerging from the open-source community. This article presents an open-source library of Verilog modules useful for vision-based robots, including reusable image processing blocks for perception and reactive control blocks. This library has been developed using open tools, but its Verilog modules are fully compatible with any proprietary toolchain. In addition, three applications with a real robot and open FPGAs have been developed for experimental validation using this library. In the last application, the mobile robot successfully follows a colored object using two low-cost cameras (to increase the robot’s field of view) and includes a third camera on top of a servo-driven turret for tracking a second independent object while following the first one in parallel. Resource consumption of all applications has been measured and compared with state-of-the-art proprietary toolchains, revealing that reconfigurable computing with open FPGAs using open tools is now an attractive alternative to designing and creating intelligent vision-based robotic applications using vendor-dependent proprietary tools and FPGAs.
期刊介绍:
Microprocessors and Microsystems: Embedded Hardware Design (MICPRO) is a journal covering all design and architectural aspects related to embedded systems hardware. This includes different embedded system hardware platforms ranging from custom hardware via reconfigurable systems and application specific processors to general purpose embedded processors. Special emphasis is put on novel complex embedded architectures, such as systems on chip (SoC), systems on a programmable/reconfigurable chip (SoPC) and multi-processor systems on a chip (MPSoC), as well as, their memory and communication methods and structures, such as network-on-chip (NoC).
Design automation of such systems including methodologies, techniques, flows and tools for their design, as well as, novel designs of hardware components fall within the scope of this journal. Novel cyber-physical applications that use embedded systems are also central in this journal. While software is not in the main focus of this journal, methods of hardware/software co-design, as well as, application restructuring and mapping to embedded hardware platforms, that consider interplay between software and hardware components with emphasis on hardware, are also in the journal scope.